从微阵列数据中产生差异表达基因用于疾病预测的方法的比较

Srirupa Dasgupta, Goutam Saha, Ritwik Mondal, R. Pal, A. Chanda
{"title":"从微阵列数据中产生差异表达基因用于疾病预测的方法的比较","authors":"Srirupa Dasgupta, Goutam Saha, Ritwik Mondal, R. Pal, A. Chanda","doi":"10.1109/C3IT.2015.7060148","DOIUrl":null,"url":null,"abstract":"Feature selection from microarray data has become an ever evolving area of research. Numerous techniques have widely been applied for extraction of genes which are expressed differentially in microarray data. Some of these comprise of studies related to fold-change approach, classical t-statistics and modified t-statistics. It has been found that the gene lists returned by these methods are dissimilar. In this work we compare the outputs of two different feature selection methods using three classifiers based on different algorithms namely the Random Forest Ensemble based method, the Support vector machine (SVM) and the KNN methods, using the prediction accuracy of the test datasets.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparision between methods for generating differentially expressed genes from microarray data for prediction of disease\",\"authors\":\"Srirupa Dasgupta, Goutam Saha, Ritwik Mondal, R. Pal, A. Chanda\",\"doi\":\"10.1109/C3IT.2015.7060148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection from microarray data has become an ever evolving area of research. Numerous techniques have widely been applied for extraction of genes which are expressed differentially in microarray data. Some of these comprise of studies related to fold-change approach, classical t-statistics and modified t-statistics. It has been found that the gene lists returned by these methods are dissimilar. In this work we compare the outputs of two different feature selection methods using three classifiers based on different algorithms namely the Random Forest Ensemble based method, the Support vector machine (SVM) and the KNN methods, using the prediction accuracy of the test datasets.\",\"PeriodicalId\":402311,\"journal\":{\"name\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C3IT.2015.7060148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从微阵列数据中进行特征选择已经成为一个不断发展的研究领域。许多技术已广泛应用于提取基因芯片数据中表达差异的基因。其中包括与折叠变化方法、经典t统计和修正t统计有关的研究。结果表明,这两种方法返回的基因表是不相同的。在这项工作中,我们使用基于不同算法的三种分类器,即基于随机森林集成的方法,支持向量机(SVM)和KNN方法,使用测试数据集的预测精度,比较了两种不同特征选择方法的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparision between methods for generating differentially expressed genes from microarray data for prediction of disease
Feature selection from microarray data has become an ever evolving area of research. Numerous techniques have widely been applied for extraction of genes which are expressed differentially in microarray data. Some of these comprise of studies related to fold-change approach, classical t-statistics and modified t-statistics. It has been found that the gene lists returned by these methods are dissimilar. In this work we compare the outputs of two different feature selection methods using three classifiers based on different algorithms namely the Random Forest Ensemble based method, the Support vector machine (SVM) and the KNN methods, using the prediction accuracy of the test datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信