Amol D. Vibhute, K. Kale, Rajesh K. Dhumal, S. Mehrotra
{"title":"使用QUAC和FLAASH算法的高光谱成像数据大气校正挑战和解决方案","authors":"Amol D. Vibhute, K. Kale, Rajesh K. Dhumal, S. Mehrotra","doi":"10.1109/MAMI.2015.7456604","DOIUrl":null,"url":null,"abstract":"Recently, Hyperspectral remote sensing technology has been proved to be a valuable tool to get reliable information with details for identifying different objects on the earth surface with high spectral resolution. Due to atmospheric effects the valuable information may be lost from hyperspectral data. Hence it is necessary to remove these effects from hyperspectral data for reliable identification of the objects on the earth surface. The atmospheric correction is a very critical task of hyperspectral images. The present paper highlights the advantages of hyperspectral data, challenges over it as a pre-processing with solutions through QUAC and FLAASH algorithms. The hyperspectral data acquired for Aurangabad district were used to test these algorithms. The result indicates that the size of hyperspectral image can be reduced. The ENVI 5.1 software with IDL language is an efficient way to visualize and analysis the hyperspectral images. Implementation of atmospheric correction algorithms like QUAC and FLAASH is successfully carried out. The QUAC model gives accurate and reliable results without any ancillary information but requires only wavelength and radiometric calibration with less time than FLAASH.","PeriodicalId":108908,"journal":{"name":"2015 International Conference on Man and Machine Interfacing (MAMI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Hyperspectral imaging data atmospheric correction challenges and solutions using QUAC and FLAASH algorithms\",\"authors\":\"Amol D. Vibhute, K. Kale, Rajesh K. Dhumal, S. Mehrotra\",\"doi\":\"10.1109/MAMI.2015.7456604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Hyperspectral remote sensing technology has been proved to be a valuable tool to get reliable information with details for identifying different objects on the earth surface with high spectral resolution. Due to atmospheric effects the valuable information may be lost from hyperspectral data. Hence it is necessary to remove these effects from hyperspectral data for reliable identification of the objects on the earth surface. The atmospheric correction is a very critical task of hyperspectral images. The present paper highlights the advantages of hyperspectral data, challenges over it as a pre-processing with solutions through QUAC and FLAASH algorithms. The hyperspectral data acquired for Aurangabad district were used to test these algorithms. The result indicates that the size of hyperspectral image can be reduced. The ENVI 5.1 software with IDL language is an efficient way to visualize and analysis the hyperspectral images. Implementation of atmospheric correction algorithms like QUAC and FLAASH is successfully carried out. The QUAC model gives accurate and reliable results without any ancillary information but requires only wavelength and radiometric calibration with less time than FLAASH.\",\"PeriodicalId\":108908,\"journal\":{\"name\":\"2015 International Conference on Man and Machine Interfacing (MAMI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Man and Machine Interfacing (MAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MAMI.2015.7456604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Man and Machine Interfacing (MAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAMI.2015.7456604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperspectral imaging data atmospheric correction challenges and solutions using QUAC and FLAASH algorithms
Recently, Hyperspectral remote sensing technology has been proved to be a valuable tool to get reliable information with details for identifying different objects on the earth surface with high spectral resolution. Due to atmospheric effects the valuable information may be lost from hyperspectral data. Hence it is necessary to remove these effects from hyperspectral data for reliable identification of the objects on the earth surface. The atmospheric correction is a very critical task of hyperspectral images. The present paper highlights the advantages of hyperspectral data, challenges over it as a pre-processing with solutions through QUAC and FLAASH algorithms. The hyperspectral data acquired for Aurangabad district were used to test these algorithms. The result indicates that the size of hyperspectral image can be reduced. The ENVI 5.1 software with IDL language is an efficient way to visualize and analysis the hyperspectral images. Implementation of atmospheric correction algorithms like QUAC and FLAASH is successfully carried out. The QUAC model gives accurate and reliable results without any ancillary information but requires only wavelength and radiometric calibration with less time than FLAASH.