基于门控循环单元的网络安全蜻蜓算法

Yutao Han, I. M. El-Hasnony, Wenbo Cai
{"title":"基于门控循环单元的网络安全蜻蜓算法","authors":"Yutao Han, I. M. El-Hasnony, Wenbo Cai","doi":"10.54216/jcim.000107","DOIUrl":null,"url":null,"abstract":"The advancements of information technologies and wireless networks have created open online communication channels. Inappropriately, trolls have abused the technologies to impose cyberattacks and threats. Automated cybersecurity solutions are essential to avoid the threats and security issues in social media. This paper presents an efficient dragonfly algorithm (DFA) with gated recurrent unit (GRU) for cybersecurity in social networking. The proposed DFA-GRU model aims to determine the social networking data into neural statements or insult (cyberbullying) statements. Besides, the DFA-GRU model primarily undergoes preprocessing to get rid of unwanted data and TF-IDF vectorizer is used. In addition, the GRU model is employed for the classification process in which the hyperparameters are optimally adjusted by the use of DFA, and thereby the overall classification results get improved. The performance validation of the DFA-GRU model is carried out using benchmark dataset and the results are examined under varying aspects. The experimental outcome highlighted the enhanced performance of the DFA-GRU model interms of distinct measures.","PeriodicalId":169383,"journal":{"name":"Journal of Cybersecurity and Information Management","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dragonfly Algorithm with Gated Recurrent Unit for Cybersecurity in Social Networking\",\"authors\":\"Yutao Han, I. M. El-Hasnony, Wenbo Cai\",\"doi\":\"10.54216/jcim.000107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancements of information technologies and wireless networks have created open online communication channels. Inappropriately, trolls have abused the technologies to impose cyberattacks and threats. Automated cybersecurity solutions are essential to avoid the threats and security issues in social media. This paper presents an efficient dragonfly algorithm (DFA) with gated recurrent unit (GRU) for cybersecurity in social networking. The proposed DFA-GRU model aims to determine the social networking data into neural statements or insult (cyberbullying) statements. Besides, the DFA-GRU model primarily undergoes preprocessing to get rid of unwanted data and TF-IDF vectorizer is used. In addition, the GRU model is employed for the classification process in which the hyperparameters are optimally adjusted by the use of DFA, and thereby the overall classification results get improved. The performance validation of the DFA-GRU model is carried out using benchmark dataset and the results are examined under varying aspects. The experimental outcome highlighted the enhanced performance of the DFA-GRU model interms of distinct measures.\",\"PeriodicalId\":169383,\"journal\":{\"name\":\"Journal of Cybersecurity and Information Management\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cybersecurity and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/jcim.000107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cybersecurity and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jcim.000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信息技术和无线网络的进步创造了开放的在线交流渠道。网络喷子不恰当地滥用这些技术实施网络攻击和威胁。自动化网络安全解决方案对于避免社交媒体中的威胁和安全问题至关重要。本文提出了一种有效的带有门控循环单元(GRU)的蜻蜓算法(DFA),用于社交网络中的网络安全。提出的DFA-GRU模型旨在将社交网络数据确定为神经语句或侮辱(网络欺凌)语句。DFA-GRU模型主要通过预处理去除不需要的数据,并使用TF-IDF矢量器。此外,在分类过程中采用GRU模型,利用DFA对超参数进行最优调整,从而提高了整体分类结果。使用基准数据集对DFA-GRU模型进行了性能验证,并从多个方面对结果进行了检验。实验结果突出了DFA-GRU模型在不同测量指标方面的增强性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dragonfly Algorithm with Gated Recurrent Unit for Cybersecurity in Social Networking
The advancements of information technologies and wireless networks have created open online communication channels. Inappropriately, trolls have abused the technologies to impose cyberattacks and threats. Automated cybersecurity solutions are essential to avoid the threats and security issues in social media. This paper presents an efficient dragonfly algorithm (DFA) with gated recurrent unit (GRU) for cybersecurity in social networking. The proposed DFA-GRU model aims to determine the social networking data into neural statements or insult (cyberbullying) statements. Besides, the DFA-GRU model primarily undergoes preprocessing to get rid of unwanted data and TF-IDF vectorizer is used. In addition, the GRU model is employed for the classification process in which the hyperparameters are optimally adjusted by the use of DFA, and thereby the overall classification results get improved. The performance validation of the DFA-GRU model is carried out using benchmark dataset and the results are examined under varying aspects. The experimental outcome highlighted the enhanced performance of the DFA-GRU model interms of distinct measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信