基于批对批模型的学习控制实验设计

Marco Forgione, X. Bombois, P. V. D. Hof
{"title":"基于批对批模型的学习控制实验设计","authors":"Marco Forgione, X. Bombois, P. V. D. Hof","doi":"10.1109/ACC.2013.6580437","DOIUrl":null,"url":null,"abstract":"An Experiment Design framework for dynamical systems which execute multiple batches is presented in this paper. After each batch, a model of the system dynamics is refined using the measured data. This model is used to synthesize the controller that will be applied in the next batch. Excitation signals may be injected into the system during each batch. From one hand, perturbing the system worsens the control performance during the current batch. On the other hand, the more informative data set will lead to a better identified model for the following batches. The role of Experiment Design is to choose the proper excitation signals in order to optimize a certain performance criterion defined on the set of batches that is scheduled. A total cost is defined in terms of the excitation and the application cost altogether. The excitation signals are designed by minimizing the total cost in a worst case sense. The Experiment Design is formulated as a Convex Optimization problem which can be solved efficiently using standard algorithms. The applicability of the method is demonstrated in a simulation study.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"19 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experiment design for batch-to-batch model-based learning control\",\"authors\":\"Marco Forgione, X. Bombois, P. V. D. Hof\",\"doi\":\"10.1109/ACC.2013.6580437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Experiment Design framework for dynamical systems which execute multiple batches is presented in this paper. After each batch, a model of the system dynamics is refined using the measured data. This model is used to synthesize the controller that will be applied in the next batch. Excitation signals may be injected into the system during each batch. From one hand, perturbing the system worsens the control performance during the current batch. On the other hand, the more informative data set will lead to a better identified model for the following batches. The role of Experiment Design is to choose the proper excitation signals in order to optimize a certain performance criterion defined on the set of batches that is scheduled. A total cost is defined in terms of the excitation and the application cost altogether. The excitation signals are designed by minimizing the total cost in a worst case sense. The Experiment Design is formulated as a Convex Optimization problem which can be solved efficiently using standard algorithms. The applicability of the method is demonstrated in a simulation study.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"19 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种多批次动态系统实验设计框架。每批后,系统动力学模型是细化使用测量数据。该模型用于合成将在下一批应用的控制器。激励信号可以在每批过程中注入系统。一方面,扰动系统会使当前批次的控制性能恶化。另一方面,信息更丰富的数据集将为后续批次带来更好的识别模型。实验设计的作用是选择适当的激励信号,以优化在计划批次集上定义的某个性能标准。总成本是由励磁和应用成本共同定义的。在最坏情况下,激励信号的设计是通过最小化总成本来实现的。实验设计是一个凸优化问题,可以用标准算法有效地求解。仿真研究表明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment design for batch-to-batch model-based learning control
An Experiment Design framework for dynamical systems which execute multiple batches is presented in this paper. After each batch, a model of the system dynamics is refined using the measured data. This model is used to synthesize the controller that will be applied in the next batch. Excitation signals may be injected into the system during each batch. From one hand, perturbing the system worsens the control performance during the current batch. On the other hand, the more informative data set will lead to a better identified model for the following batches. The role of Experiment Design is to choose the proper excitation signals in order to optimize a certain performance criterion defined on the set of batches that is scheduled. A total cost is defined in terms of the excitation and the application cost altogether. The excitation signals are designed by minimizing the total cost in a worst case sense. The Experiment Design is formulated as a Convex Optimization problem which can be solved efficiently using standard algorithms. The applicability of the method is demonstrated in a simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信