S. Javadi, Seyed Morsal Mosallami Aghili, Amir Mohammad Javadi, S. Raminfard
{"title":"改进dti神经束造影在脑肿瘤区纤维重建的方法:个案说明及文献复习","authors":"S. Javadi, Seyed Morsal Mosallami Aghili, Amir Mohammad Javadi, S. Raminfard","doi":"10.32598/irjns.specialissue.2","DOIUrl":null,"url":null,"abstract":"Background and Aim: Diffusion Tensor Imaging (DTI)-based tractography can help us visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The current study aims to discuss several solutions to improve the procedure of fiber reconstruction adjacent to or inside brain lesions. Illustrative cases are also presented. Methods and Materials/Patients: The paper is a narrative review of methods that can improve DTI-based fiber reconstruction in the area of brain tumors. To provide up-to-date information, we briefly reviewed related articles extracted from Google Scholar, Medline, and PubMed. Results: We proposed five techniques to improve fiber reconstruction. Technique 1 is a very low Fractional Anisotropy (FA) application. Technique 2 includes resampling techniques, such as q-ball and High Angular Resolution Diffusion Imaging (HARDI). Technique 3 is the reconstruction of fiber tracts by defining the separated Region of Interest (ROIs). Technique 4 explains the selection of the ROIs according to functional Magnetic Resonance Imaging (fMRI) since the anatomical configuration is distorted by neoplasm. Technique 5 consists of using unprocessed images for preoperative planning and correlation with the clinical situation. Conclusion: DTI tractography is highly sensitive to noise and artifacts. The application of tractography techniques can improve fiber imaging in the area of brain tumors and edema.","PeriodicalId":143032,"journal":{"name":"The Iranian Journal of Neurosurgery","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review\",\"authors\":\"S. Javadi, Seyed Morsal Mosallami Aghili, Amir Mohammad Javadi, S. Raminfard\",\"doi\":\"10.32598/irjns.specialissue.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aim: Diffusion Tensor Imaging (DTI)-based tractography can help us visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The current study aims to discuss several solutions to improve the procedure of fiber reconstruction adjacent to or inside brain lesions. Illustrative cases are also presented. Methods and Materials/Patients: The paper is a narrative review of methods that can improve DTI-based fiber reconstruction in the area of brain tumors. To provide up-to-date information, we briefly reviewed related articles extracted from Google Scholar, Medline, and PubMed. Results: We proposed five techniques to improve fiber reconstruction. Technique 1 is a very low Fractional Anisotropy (FA) application. Technique 2 includes resampling techniques, such as q-ball and High Angular Resolution Diffusion Imaging (HARDI). Technique 3 is the reconstruction of fiber tracts by defining the separated Region of Interest (ROIs). Technique 4 explains the selection of the ROIs according to functional Magnetic Resonance Imaging (fMRI) since the anatomical configuration is distorted by neoplasm. Technique 5 consists of using unprocessed images for preoperative planning and correlation with the clinical situation. Conclusion: DTI tractography is highly sensitive to noise and artifacts. The application of tractography techniques can improve fiber imaging in the area of brain tumors and edema.\",\"PeriodicalId\":143032,\"journal\":{\"name\":\"The Iranian Journal of Neurosurgery\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Iranian Journal of Neurosurgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/irjns.specialissue.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Iranian Journal of Neurosurgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/irjns.specialissue.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review
Background and Aim: Diffusion Tensor Imaging (DTI)-based tractography can help us visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The current study aims to discuss several solutions to improve the procedure of fiber reconstruction adjacent to or inside brain lesions. Illustrative cases are also presented. Methods and Materials/Patients: The paper is a narrative review of methods that can improve DTI-based fiber reconstruction in the area of brain tumors. To provide up-to-date information, we briefly reviewed related articles extracted from Google Scholar, Medline, and PubMed. Results: We proposed five techniques to improve fiber reconstruction. Technique 1 is a very low Fractional Anisotropy (FA) application. Technique 2 includes resampling techniques, such as q-ball and High Angular Resolution Diffusion Imaging (HARDI). Technique 3 is the reconstruction of fiber tracts by defining the separated Region of Interest (ROIs). Technique 4 explains the selection of the ROIs according to functional Magnetic Resonance Imaging (fMRI) since the anatomical configuration is distorted by neoplasm. Technique 5 consists of using unprocessed images for preoperative planning and correlation with the clinical situation. Conclusion: DTI tractography is highly sensitive to noise and artifacts. The application of tractography techniques can improve fiber imaging in the area of brain tumors and edema.