{"title":"学习社会参与的视觉模型","authors":"B. Singletary, Thad Starner","doi":"10.1109/RATFG.2001.938923","DOIUrl":null,"url":null,"abstract":"We introduce a face detector for wearable computers that exploits constraints in face scale and orientation imposed by the proximity of participants in near social interactions. Using this method we describe a wearable system that perceives \"social engagement,\" i.e., when the wearer begins to interact with other individuals. Our experimental system proved >90% accurate when tested on wearable video data captured at a professional conference. Over 300 individuals were captured during social engagement, and the data was separated into independent training and test sets. A metric for balancing the performance of face detection, localization, and recognition in the context of a wearable interface is discussed. Recognizing social engagement with a user's wearable computer provides context data that can be useful in determining when the user is interruptible. In addition, social engagement detection may be incorporated into a user interface to improve the quality of mobile face recognition software. For example, the user may cue the face recognition system in a socially graceful way by turning slightly away and then toward a speaker when conditions for recognition are favorable.","PeriodicalId":355094,"journal":{"name":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning visual models of social engagement\",\"authors\":\"B. Singletary, Thad Starner\",\"doi\":\"10.1109/RATFG.2001.938923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a face detector for wearable computers that exploits constraints in face scale and orientation imposed by the proximity of participants in near social interactions. Using this method we describe a wearable system that perceives \\\"social engagement,\\\" i.e., when the wearer begins to interact with other individuals. Our experimental system proved >90% accurate when tested on wearable video data captured at a professional conference. Over 300 individuals were captured during social engagement, and the data was separated into independent training and test sets. A metric for balancing the performance of face detection, localization, and recognition in the context of a wearable interface is discussed. Recognizing social engagement with a user's wearable computer provides context data that can be useful in determining when the user is interruptible. In addition, social engagement detection may be incorporated into a user interface to improve the quality of mobile face recognition software. For example, the user may cue the face recognition system in a socially graceful way by turning slightly away and then toward a speaker when conditions for recognition are favorable.\",\"PeriodicalId\":355094,\"journal\":{\"name\":\"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RATFG.2001.938923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RATFG.2001.938923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a face detector for wearable computers that exploits constraints in face scale and orientation imposed by the proximity of participants in near social interactions. Using this method we describe a wearable system that perceives "social engagement," i.e., when the wearer begins to interact with other individuals. Our experimental system proved >90% accurate when tested on wearable video data captured at a professional conference. Over 300 individuals were captured during social engagement, and the data was separated into independent training and test sets. A metric for balancing the performance of face detection, localization, and recognition in the context of a wearable interface is discussed. Recognizing social engagement with a user's wearable computer provides context data that can be useful in determining when the user is interruptible. In addition, social engagement detection may be incorporated into a user interface to improve the quality of mobile face recognition software. For example, the user may cue the face recognition system in a socially graceful way by turning slightly away and then toward a speaker when conditions for recognition are favorable.