高斯白噪声中的信号活动检测:在P300检测中的应用

Ali Mobaien, R. Boostani, Negar Kheirandish
{"title":"高斯白噪声中的信号活动检测:在P300检测中的应用","authors":"Ali Mobaien, R. Boostani, Negar Kheirandish","doi":"10.1109/ICSPIS54653.2021.9729330","DOIUrl":null,"url":null,"abstract":"In this research, we have proposed a new scheme to detect and extract the activity of an unknown smooth template in presence of white Gaussian noise with unknown variance. In this regard, the problem is modeled by a binary hypothesis test, and it is solved employing the generalized likelihood ratio (GLR) method. GLR test uses the maximum likelihood (ML) estimation of unknown parameters under each hypothesis. The ML estimation of the desired signal yields an optimization problem with smoothness constraint which is in the form of a conventional least square error estimation problem and can be solved optimally. The proposed detection scheme is studied for P300 elicitation from the background electroencephalography signal. In addition, to assume the P300 smoothness, two prior knowledge are considered in terms of positivity and approximate occurrence time of P300. The performance of the method is assessed on both real and synthetic datasets in different noise levels and compared to a conventional signal detection scheme without considering smoothness priors, as well as state-of-the-art linear and quadratic discriminant analysis. The results are illustrated in terms of detection probability, false alarm rate, and accuracy. The proposed method outperforms the counterparts in low signal-to-noise ratio situations.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"85 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal activity detection in white Gaussian noise: Application to P300 detection\",\"authors\":\"Ali Mobaien, R. Boostani, Negar Kheirandish\",\"doi\":\"10.1109/ICSPIS54653.2021.9729330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we have proposed a new scheme to detect and extract the activity of an unknown smooth template in presence of white Gaussian noise with unknown variance. In this regard, the problem is modeled by a binary hypothesis test, and it is solved employing the generalized likelihood ratio (GLR) method. GLR test uses the maximum likelihood (ML) estimation of unknown parameters under each hypothesis. The ML estimation of the desired signal yields an optimization problem with smoothness constraint which is in the form of a conventional least square error estimation problem and can be solved optimally. The proposed detection scheme is studied for P300 elicitation from the background electroencephalography signal. In addition, to assume the P300 smoothness, two prior knowledge are considered in terms of positivity and approximate occurrence time of P300. The performance of the method is assessed on both real and synthetic datasets in different noise levels and compared to a conventional signal detection scheme without considering smoothness priors, as well as state-of-the-art linear and quadratic discriminant analysis. The results are illustrated in terms of detection probability, false alarm rate, and accuracy. The proposed method outperforms the counterparts in low signal-to-noise ratio situations.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"85 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们提出了一种新的方案来检测和提取未知平滑模板的活动存在未知方差的高斯白噪声。为此,该问题采用二值假设检验建模,并采用广义似然比(GLR)方法求解。GLR检验使用每个假设下未知参数的最大似然估计(ML)。期望信号的ML估计产生一个具有平滑约束的优化问题,该问题以传统最小二乘误差估计问题的形式存在,并且可以得到最优解。研究了基于背景脑电图信号的P300激发检测方案。此外,为了假设P300的平滑性,在P300的正性和近似发生时间方面考虑了两个先验知识。该方法在不同噪声水平下的真实和合成数据集上进行了性能评估,并与传统的信号检测方案进行了比较,而不考虑平滑先验,以及最先进的线性和二次判别分析。结果从检测概率、虚警率和准确率三个方面进行了说明。该方法在低信噪比情况下优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal activity detection in white Gaussian noise: Application to P300 detection
In this research, we have proposed a new scheme to detect and extract the activity of an unknown smooth template in presence of white Gaussian noise with unknown variance. In this regard, the problem is modeled by a binary hypothesis test, and it is solved employing the generalized likelihood ratio (GLR) method. GLR test uses the maximum likelihood (ML) estimation of unknown parameters under each hypothesis. The ML estimation of the desired signal yields an optimization problem with smoothness constraint which is in the form of a conventional least square error estimation problem and can be solved optimally. The proposed detection scheme is studied for P300 elicitation from the background electroencephalography signal. In addition, to assume the P300 smoothness, two prior knowledge are considered in terms of positivity and approximate occurrence time of P300. The performance of the method is assessed on both real and synthetic datasets in different noise levels and compared to a conventional signal detection scheme without considering smoothness priors, as well as state-of-the-art linear and quadratic discriminant analysis. The results are illustrated in terms of detection probability, false alarm rate, and accuracy. The proposed method outperforms the counterparts in low signal-to-noise ratio situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信