基于动态运动原语的移动机器人路径规划

Minghao Jiang, Yang Chen, Wenlei Zheng, Huaiyu Wu, Lei Cheng
{"title":"基于动态运动原语的移动机器人路径规划","authors":"Minghao Jiang, Yang Chen, Wenlei Zheng, Huaiyu Wu, Lei Cheng","doi":"10.1109/ICINFA.2016.7831961","DOIUrl":null,"url":null,"abstract":"A novel learning algorithm based on Dynamic Movement Primitives (DMPs) is proposed for mobile robot path planning. First a path is artificially planned and the trajectories are used as sample set. The autonomous path planning of the robot is realized by establishing the DMPs model, utilizing the model parameters obtained by training with the sample trajectory. At last, the learned trajectory is generalized to new targets to realize the generalization of dynamic movement primitives. The simulation and experimental results show that DMPs algorithm is feasible on a mobile robot path planning.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mobile robot path planning based on dynamic movement primitives\",\"authors\":\"Minghao Jiang, Yang Chen, Wenlei Zheng, Huaiyu Wu, Lei Cheng\",\"doi\":\"10.1109/ICINFA.2016.7831961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel learning algorithm based on Dynamic Movement Primitives (DMPs) is proposed for mobile robot path planning. First a path is artificially planned and the trajectories are used as sample set. The autonomous path planning of the robot is realized by establishing the DMPs model, utilizing the model parameters obtained by training with the sample trajectory. At last, the learned trajectory is generalized to new targets to realize the generalization of dynamic movement primitives. The simulation and experimental results show that DMPs algorithm is feasible on a mobile robot path planning.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7831961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7831961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于动态运动原语的移动机器人路径规划学习算法。首先,人工规划路径,并将轨迹作为样本集。利用样本轨迹训练得到的模型参数,建立DMPs模型,实现机器人的自主路径规划。最后,将学习到的轨迹泛化到新的目标上,实现动态运动原语的泛化。仿真和实验结果表明,dmp算法在移动机器人路径规划上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile robot path planning based on dynamic movement primitives
A novel learning algorithm based on Dynamic Movement Primitives (DMPs) is proposed for mobile robot path planning. First a path is artificially planned and the trajectories are used as sample set. The autonomous path planning of the robot is realized by establishing the DMPs model, utilizing the model parameters obtained by training with the sample trajectory. At last, the learned trajectory is generalized to new targets to realize the generalization of dynamic movement primitives. The simulation and experimental results show that DMPs algorithm is feasible on a mobile robot path planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信