{"title":"柔性机械臂的动态位置/力混合控制","authors":"Keping Liu, Yuan-chun Li, Jian Kang, Xiaobo Qu","doi":"10.1109/IVEC.1999.830670","DOIUrl":null,"url":null,"abstract":"In this paper, a dynamic hybrid control method is proposed for constrained flexible manipulators. Based on the assumed mode method, the authors derive the dynamical equations of a constrained two-link flexible manipulator. They then divide it into a slow subsystem and a fast subsystem via a singular perturbation method. For the slow subsystem, the authors present a hybrid position/force control method based on force feedback. For the fast subsystem, they design a controller based on optimal theory. Simulation results prove the effectiveness of this method.","PeriodicalId":191336,"journal":{"name":"Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99) (Cat. No.99EX257)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic hybrid position/force control of a flexible manipulator\",\"authors\":\"Keping Liu, Yuan-chun Li, Jian Kang, Xiaobo Qu\",\"doi\":\"10.1109/IVEC.1999.830670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a dynamic hybrid control method is proposed for constrained flexible manipulators. Based on the assumed mode method, the authors derive the dynamical equations of a constrained two-link flexible manipulator. They then divide it into a slow subsystem and a fast subsystem via a singular perturbation method. For the slow subsystem, the authors present a hybrid position/force control method based on force feedback. For the fast subsystem, they design a controller based on optimal theory. Simulation results prove the effectiveness of this method.\",\"PeriodicalId\":191336,\"journal\":{\"name\":\"Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99) (Cat. No.99EX257)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99) (Cat. No.99EX257)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVEC.1999.830670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99) (Cat. No.99EX257)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVEC.1999.830670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic hybrid position/force control of a flexible manipulator
In this paper, a dynamic hybrid control method is proposed for constrained flexible manipulators. Based on the assumed mode method, the authors derive the dynamical equations of a constrained two-link flexible manipulator. They then divide it into a slow subsystem and a fast subsystem via a singular perturbation method. For the slow subsystem, the authors present a hybrid position/force control method based on force feedback. For the fast subsystem, they design a controller based on optimal theory. Simulation results prove the effectiveness of this method.