用随机投影近似混合分布之间的l1距离

Satyaki Mahalanabis, Daniel Stefankovic
{"title":"用随机投影近似混合分布之间的l1距离","authors":"Satyaki Mahalanabis, Daniel Stefankovic","doi":"10.1137/1.9781611972993.11","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing L1-distances between every pair of probability densities from a given family, a problem motivated by density estimation [15]. We point out that the technique of Cauchy random projections [10] in this context turns into stochastic integrals with respect to Cauchy motion. \n \nFor piecewise-linear densities these integrals can be sampled from if one can sample from the stochastic integral of the function x → (1, x). We give an explicit density function for this stochastic integral and present an efficient (exact) sampling algorithm. As a consequence we obtain an efficient algorithm to approximate the L1-distances with a small relative error. \n \nFor piecewise-polynomial densities we show how to approximately sample from the distributions resulting from the stochastic integrals. This also results in an efficient algorithm to approximate the L1-distances, although our inability to get exact samples worsens the dependence on the parameters.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximating L1-distances Between Mixture Distributions Using Random Projections\",\"authors\":\"Satyaki Mahalanabis, Daniel Stefankovic\",\"doi\":\"10.1137/1.9781611972993.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing L1-distances between every pair of probability densities from a given family, a problem motivated by density estimation [15]. We point out that the technique of Cauchy random projections [10] in this context turns into stochastic integrals with respect to Cauchy motion. \\n \\nFor piecewise-linear densities these integrals can be sampled from if one can sample from the stochastic integral of the function x → (1, x). We give an explicit density function for this stochastic integral and present an efficient (exact) sampling algorithm. As a consequence we obtain an efficient algorithm to approximate the L1-distances with a small relative error. \\n \\nFor piecewise-polynomial densities we show how to approximately sample from the distributions resulting from the stochastic integrals. This also results in an efficient algorithm to approximate the L1-distances, although our inability to get exact samples worsens the dependence on the parameters.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972993.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972993.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑计算给定族中每对概率密度之间的l1距离的问题,这是一个由密度估计引起的问题[15]。我们指出,在这种情况下,柯西随机投影技术[10]变成了关于柯西运动的随机积分。对于分段线性密度,如果可以从函数x→(1,x)的随机积分中采样,则可以从这些积分中采样。我们给出了该随机积分的显式密度函数,并给出了一个有效的(精确的)采样算法。因此,我们得到了一种以较小的相对误差近似l1距离的有效算法。对于分段多项式密度,我们展示了如何从随机积分产生的分布中近似采样。这也导致了一个有效的算法来近似l1距离,尽管我们无法获得精确的样本恶化了对参数的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating L1-distances Between Mixture Distributions Using Random Projections
We consider the problem of computing L1-distances between every pair of probability densities from a given family, a problem motivated by density estimation [15]. We point out that the technique of Cauchy random projections [10] in this context turns into stochastic integrals with respect to Cauchy motion. For piecewise-linear densities these integrals can be sampled from if one can sample from the stochastic integral of the function x → (1, x). We give an explicit density function for this stochastic integral and present an efficient (exact) sampling algorithm. As a consequence we obtain an efficient algorithm to approximate the L1-distances with a small relative error. For piecewise-polynomial densities we show how to approximately sample from the distributions resulting from the stochastic integrals. This also results in an efficient algorithm to approximate the L1-distances, although our inability to get exact samples worsens the dependence on the parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信