一种高效的德拉威语机器翻译模型

Chandramma, Piyush Kumar Pareek, K. Swathi, Puneet Shetteppanavar
{"title":"一种高效的德拉威语机器翻译模型","authors":"Chandramma, Piyush Kumar Pareek, K. Swathi, Puneet Shetteppanavar","doi":"10.1109/RTEICT.2017.8256970","DOIUrl":null,"url":null,"abstract":"In a multilingual diversity country like India, language translation plays a significant factor in the area of text processing application such as information extraction, machine learning, natural language understanding, information retrieval and machine translation. Thereexists many challenges and issues in translation between languages, especially the Dravidian language, such as ambiguities, lexical divergence, syntactic, lexical mismatches and semantic issues, etc. The n — gram language model (LM) performs very well machine translation. However the existing approach is not efficient for generating n — gram from large bi-lingual parallel corpora. Most existing approaches are limited to monolingual to minimize redundant n — gram. To overcome this, this work presents an efficient machine translation model using machine learning techniques. No prior work has considered machine translation of Kannada and Telugu. The experimentis conducted on Wikipedia dataset show significant performance in term of accuracy and computation complexity of alignment considering different threshold.","PeriodicalId":342831,"journal":{"name":"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"An efficient machine translation model for Dravidian language\",\"authors\":\"Chandramma, Piyush Kumar Pareek, K. Swathi, Puneet Shetteppanavar\",\"doi\":\"10.1109/RTEICT.2017.8256970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multilingual diversity country like India, language translation plays a significant factor in the area of text processing application such as information extraction, machine learning, natural language understanding, information retrieval and machine translation. Thereexists many challenges and issues in translation between languages, especially the Dravidian language, such as ambiguities, lexical divergence, syntactic, lexical mismatches and semantic issues, etc. The n — gram language model (LM) performs very well machine translation. However the existing approach is not efficient for generating n — gram from large bi-lingual parallel corpora. Most existing approaches are limited to monolingual to minimize redundant n — gram. To overcome this, this work presents an efficient machine translation model using machine learning techniques. No prior work has considered machine translation of Kannada and Telugu. The experimentis conducted on Wikipedia dataset show significant performance in term of accuracy and computation complexity of alignment considering different threshold.\",\"PeriodicalId\":342831,\"journal\":{\"name\":\"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2017.8256970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2017.8256970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在印度这样一个多语言多样性的国家,语言翻译在信息提取、机器学习、自然语言理解、信息检索和机器翻译等文本处理应用领域起着重要的作用。语言间的翻译存在着歧义、词汇歧义、句法、词汇错配、语义问题等诸多挑战和问题,尤其是在德拉威语中。n元语言模型(LM)具有很好的机器翻译效果。然而,现有的方法对于从大型双语并行语料库中生成n - gram的效率不高。大多数现有的方法都局限于单语,以尽量减少冗余的n - gram。为了克服这个问题,本研究提出了一个使用机器学习技术的高效机器翻译模型。以前没有研究过卡纳达语和泰卢固语的机器翻译。在维基百科数据集上进行的实验表明,在考虑不同阈值的情况下,对齐的精度和计算复杂度都有显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient machine translation model for Dravidian language
In a multilingual diversity country like India, language translation plays a significant factor in the area of text processing application such as information extraction, machine learning, natural language understanding, information retrieval and machine translation. Thereexists many challenges and issues in translation between languages, especially the Dravidian language, such as ambiguities, lexical divergence, syntactic, lexical mismatches and semantic issues, etc. The n — gram language model (LM) performs very well machine translation. However the existing approach is not efficient for generating n — gram from large bi-lingual parallel corpora. Most existing approaches are limited to monolingual to minimize redundant n — gram. To overcome this, this work presents an efficient machine translation model using machine learning techniques. No prior work has considered machine translation of Kannada and Telugu. The experimentis conducted on Wikipedia dataset show significant performance in term of accuracy and computation complexity of alignment considering different threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信