{"title":"基于三维点云Siamese网络的复杂机械组件视觉检测","authors":"Velibor Došljak, Igor Jovančević, J. Orteu","doi":"10.1117/12.2692751","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution for the problem of visual mechanical assembly inspection by processing point cloud data acquired via a 3D scanner. The approach is based on deep Siamese neural networks for 3D point clouds. To overcome the requirement for a large amount of labeled training data, only synthetically generated data is used for training and validation. Real-acquired point clouds are used only in testing phase.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual inspection of complex mechanical assemblies based on Siamese networks for 3D point clouds\",\"authors\":\"Velibor Došljak, Igor Jovančević, J. Orteu\",\"doi\":\"10.1117/12.2692751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a solution for the problem of visual mechanical assembly inspection by processing point cloud data acquired via a 3D scanner. The approach is based on deep Siamese neural networks for 3D point clouds. To overcome the requirement for a large amount of labeled training data, only synthetically generated data is used for training and validation. Real-acquired point clouds are used only in testing phase.\",\"PeriodicalId\":295011,\"journal\":{\"name\":\"International Conference on Quality Control by Artificial Vision\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Quality Control by Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2692751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2692751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual inspection of complex mechanical assemblies based on Siamese networks for 3D point clouds
This paper proposes a solution for the problem of visual mechanical assembly inspection by processing point cloud data acquired via a 3D scanner. The approach is based on deep Siamese neural networks for 3D point clouds. To overcome the requirement for a large amount of labeled training data, only synthetically generated data is used for training and validation. Real-acquired point clouds are used only in testing phase.