{"title":"用结构化采样器进行协方差压缩的有限样本分析","authors":"Heng Qiao, P. Pal","doi":"10.1109/SAM.2016.7569732","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of compressively sampling wide sense stationary random vectors with low rank Toeplitz structured covariance matrix. Using the celebrated Caratheodory's theorem, Toeplitz structured covariance matrix recovery can be cast as line spectrum estimation problem. In this paper, we utilize this connection to establish theoretical guarantees under which low rank Toeplitz covariance matrices can be compressively sketched and reconstructed from a finite number of compressed samples. Using a newly proposed structured sampler, namely the Generalized Nested Sampler (GNS), we show that stable estimation of original N × N Toeplitz covariance matrix of rank r can be obtained from a compressed sketch of size O(√r) × O(√r) using an atomic norm minimization framework.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite sample analysis of covariance compression using structured samplers\",\"authors\":\"Heng Qiao, P. Pal\",\"doi\":\"10.1109/SAM.2016.7569732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of compressively sampling wide sense stationary random vectors with low rank Toeplitz structured covariance matrix. Using the celebrated Caratheodory's theorem, Toeplitz structured covariance matrix recovery can be cast as line spectrum estimation problem. In this paper, we utilize this connection to establish theoretical guarantees under which low rank Toeplitz covariance matrices can be compressively sketched and reconstructed from a finite number of compressed samples. Using a newly proposed structured sampler, namely the Generalized Nested Sampler (GNS), we show that stable estimation of original N × N Toeplitz covariance matrix of rank r can be obtained from a compressed sketch of size O(√r) × O(√r) using an atomic norm minimization framework.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
研究了具有低秩Toeplitz结构协方差矩阵的广义平稳随机向量的压缩采样问题。利用著名的Caratheodory定理,Toeplitz结构协方差矩阵恢复可以转化为线谱估计问题。在本文中,我们利用这一联系建立了理论保证,在此保证下,低秩Toeplitz协方差矩阵可以从有限数量的压缩样本中压缩绘制和重构。利用一种新提出的结构化采样器——广义嵌套采样器(GNS),我们证明了利用原子范数最小化框架,可以从大小为O(√r) × O(√r)的压缩草图中获得秩r的原始N × N Toeplitz协方差矩阵的稳定估计。
Finite sample analysis of covariance compression using structured samplers
This paper considers the problem of compressively sampling wide sense stationary random vectors with low rank Toeplitz structured covariance matrix. Using the celebrated Caratheodory's theorem, Toeplitz structured covariance matrix recovery can be cast as line spectrum estimation problem. In this paper, we utilize this connection to establish theoretical guarantees under which low rank Toeplitz covariance matrices can be compressively sketched and reconstructed from a finite number of compressed samples. Using a newly proposed structured sampler, namely the Generalized Nested Sampler (GNS), we show that stable estimation of original N × N Toeplitz covariance matrix of rank r can be obtained from a compressed sketch of size O(√r) × O(√r) using an atomic norm minimization framework.