用结构化采样器进行协方差压缩的有限样本分析

Heng Qiao, P. Pal
{"title":"用结构化采样器进行协方差压缩的有限样本分析","authors":"Heng Qiao, P. Pal","doi":"10.1109/SAM.2016.7569732","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of compressively sampling wide sense stationary random vectors with low rank Toeplitz structured covariance matrix. Using the celebrated Caratheodory's theorem, Toeplitz structured covariance matrix recovery can be cast as line spectrum estimation problem. In this paper, we utilize this connection to establish theoretical guarantees under which low rank Toeplitz covariance matrices can be compressively sketched and reconstructed from a finite number of compressed samples. Using a newly proposed structured sampler, namely the Generalized Nested Sampler (GNS), we show that stable estimation of original N × N Toeplitz covariance matrix of rank r can be obtained from a compressed sketch of size O(√r) × O(√r) using an atomic norm minimization framework.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite sample analysis of covariance compression using structured samplers\",\"authors\":\"Heng Qiao, P. Pal\",\"doi\":\"10.1109/SAM.2016.7569732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of compressively sampling wide sense stationary random vectors with low rank Toeplitz structured covariance matrix. Using the celebrated Caratheodory's theorem, Toeplitz structured covariance matrix recovery can be cast as line spectrum estimation problem. In this paper, we utilize this connection to establish theoretical guarantees under which low rank Toeplitz covariance matrices can be compressively sketched and reconstructed from a finite number of compressed samples. Using a newly proposed structured sampler, namely the Generalized Nested Sampler (GNS), we show that stable estimation of original N × N Toeplitz covariance matrix of rank r can be obtained from a compressed sketch of size O(√r) × O(√r) using an atomic norm minimization framework.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了具有低秩Toeplitz结构协方差矩阵的广义平稳随机向量的压缩采样问题。利用著名的Caratheodory定理,Toeplitz结构协方差矩阵恢复可以转化为线谱估计问题。在本文中,我们利用这一联系建立了理论保证,在此保证下,低秩Toeplitz协方差矩阵可以从有限数量的压缩样本中压缩绘制和重构。利用一种新提出的结构化采样器——广义嵌套采样器(GNS),我们证明了利用原子范数最小化框架,可以从大小为O(√r) × O(√r)的压缩草图中获得秩r的原始N × N Toeplitz协方差矩阵的稳定估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite sample analysis of covariance compression using structured samplers
This paper considers the problem of compressively sampling wide sense stationary random vectors with low rank Toeplitz structured covariance matrix. Using the celebrated Caratheodory's theorem, Toeplitz structured covariance matrix recovery can be cast as line spectrum estimation problem. In this paper, we utilize this connection to establish theoretical guarantees under which low rank Toeplitz covariance matrices can be compressively sketched and reconstructed from a finite number of compressed samples. Using a newly proposed structured sampler, namely the Generalized Nested Sampler (GNS), we show that stable estimation of original N × N Toeplitz covariance matrix of rank r can be obtained from a compressed sketch of size O(√r) × O(√r) using an atomic norm minimization framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信