预测Twitter Buzz的机器学习模型比较

Yash Parikh, Eman Abdelfattah
{"title":"预测Twitter Buzz的机器学习模型比较","authors":"Yash Parikh, Eman Abdelfattah","doi":"10.1109/UEMCON47517.2019.8993082","DOIUrl":null,"url":null,"abstract":"This paper investigates six machine-learning models to determine which algorithm would effectively predict buzz on Twitter. Different classifiers are applied such as Stochastic Gradient Descent, Support Vector Machines, Logistic Regression, Deep Neural Networks, Random Forests and Extra Trees on a Twitter dataset. This dataset contains features with users and author engagement over a certain period. After tests conducted on all the algorithms, we concluded that Extra Trees model outperforms the other models.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Machine Learning Models to Predict Twitter Buzz\",\"authors\":\"Yash Parikh, Eman Abdelfattah\",\"doi\":\"10.1109/UEMCON47517.2019.8993082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates six machine-learning models to determine which algorithm would effectively predict buzz on Twitter. Different classifiers are applied such as Stochastic Gradient Descent, Support Vector Machines, Logistic Regression, Deep Neural Networks, Random Forests and Extra Trees on a Twitter dataset. This dataset contains features with users and author engagement over a certain period. After tests conducted on all the algorithms, we concluded that Extra Trees model outperforms the other models.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8993082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了六种机器学习模型,以确定哪种算法可以有效地预测Twitter上的嗡嗡声。在Twitter数据集上应用了不同的分类器,如随机梯度下降、支持向量机、逻辑回归、深度神经网络、随机森林和额外树。该数据集包含特定时期内用户和作者参与的特征。在对所有算法进行测试后,我们得出结论,Extra Trees模型优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Machine Learning Models to Predict Twitter Buzz
This paper investigates six machine-learning models to determine which algorithm would effectively predict buzz on Twitter. Different classifiers are applied such as Stochastic Gradient Descent, Support Vector Machines, Logistic Regression, Deep Neural Networks, Random Forests and Extra Trees on a Twitter dataset. This dataset contains features with users and author engagement over a certain period. After tests conducted on all the algorithms, we concluded that Extra Trees model outperforms the other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信