M Beneking, M Oellerich, L Binder, G F Choitz, R Haeckel
{"title":"低血糖诱导物质对线粒体肉碱酰基肉碱转位酶的抑制作用。","authors":"M Beneking, M Oellerich, L Binder, G F Choitz, R Haeckel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The rate of mitochondrial carnitine-carnitine exchange mediated by carnitine acylcarnitine translocase was measured in the presence of the two hypoglycaemia-inducing drugs, 2-(3-methyl-cinnamyl-hydrazono)-propionate and 2-(3-phenylpropoxyimino)-butyric acid (BM 13.677). Both substances caused a concentration-dependent decrease in the rate of carnitine uptake in guinea pig liver mitochondria. Apparent initial influx rates were decreased by 75% and 80% at a concentration of 2 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate and 2-(3-phenylpropoxyimino)-butyric acid, respectively. Intraperitoneal injections of 212 mumol 2-(3-phenylpropoxyimino)-butyric acid or 21 mumol 2-(3-methyl-cinnamyl-hydrazono)-propionate per kg body weight caused a noticeable decrease in blood glucose concentration. A significant fall of the blood ketone body concentration was achieved with 2-(3-methyl-cinnamyl-hydrazono)-propionate or 2-(3-phenylpropoxyimino)-butyric acid, at dosages of 21 and 255 mumol/l, respectively. Furthermore there was a dose-dependent increase in the plasma free fatty acid concentration in the presence of 2-(3-methyl-cinnamyl-hydrazono)-propionate. This increase, however, was much less pronounced with 2-(3-phenylpropoxyimino)-butyric acid. Metabolic effects of 2-(3-methyl-cinnamyl-hydrazono)-propionate are consistent with an inhibition of long-chain fatty acid transport, whereas an additional mechanism of action has to be assumed for 2-(3-phenylpropoxyimino)-butyric acid.</p>","PeriodicalId":15649,"journal":{"name":"Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie","volume":"28 5","pages":"323-7"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of mitochondrial carnitine acylcarnitine translocase by hypoglycaemia-inducing substances.\",\"authors\":\"M Beneking, M Oellerich, L Binder, G F Choitz, R Haeckel\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rate of mitochondrial carnitine-carnitine exchange mediated by carnitine acylcarnitine translocase was measured in the presence of the two hypoglycaemia-inducing drugs, 2-(3-methyl-cinnamyl-hydrazono)-propionate and 2-(3-phenylpropoxyimino)-butyric acid (BM 13.677). Both substances caused a concentration-dependent decrease in the rate of carnitine uptake in guinea pig liver mitochondria. Apparent initial influx rates were decreased by 75% and 80% at a concentration of 2 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate and 2-(3-phenylpropoxyimino)-butyric acid, respectively. Intraperitoneal injections of 212 mumol 2-(3-phenylpropoxyimino)-butyric acid or 21 mumol 2-(3-methyl-cinnamyl-hydrazono)-propionate per kg body weight caused a noticeable decrease in blood glucose concentration. A significant fall of the blood ketone body concentration was achieved with 2-(3-methyl-cinnamyl-hydrazono)-propionate or 2-(3-phenylpropoxyimino)-butyric acid, at dosages of 21 and 255 mumol/l, respectively. Furthermore there was a dose-dependent increase in the plasma free fatty acid concentration in the presence of 2-(3-methyl-cinnamyl-hydrazono)-propionate. This increase, however, was much less pronounced with 2-(3-phenylpropoxyimino)-butyric acid. Metabolic effects of 2-(3-methyl-cinnamyl-hydrazono)-propionate are consistent with an inhibition of long-chain fatty acid transport, whereas an additional mechanism of action has to be assumed for 2-(3-phenylpropoxyimino)-butyric acid.</p>\",\"PeriodicalId\":15649,\"journal\":{\"name\":\"Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie\",\"volume\":\"28 5\",\"pages\":\"323-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of mitochondrial carnitine acylcarnitine translocase by hypoglycaemia-inducing substances.
The rate of mitochondrial carnitine-carnitine exchange mediated by carnitine acylcarnitine translocase was measured in the presence of the two hypoglycaemia-inducing drugs, 2-(3-methyl-cinnamyl-hydrazono)-propionate and 2-(3-phenylpropoxyimino)-butyric acid (BM 13.677). Both substances caused a concentration-dependent decrease in the rate of carnitine uptake in guinea pig liver mitochondria. Apparent initial influx rates were decreased by 75% and 80% at a concentration of 2 mmol/l 2-(3-methyl-cinnamyl-hydrazono)-propionate and 2-(3-phenylpropoxyimino)-butyric acid, respectively. Intraperitoneal injections of 212 mumol 2-(3-phenylpropoxyimino)-butyric acid or 21 mumol 2-(3-methyl-cinnamyl-hydrazono)-propionate per kg body weight caused a noticeable decrease in blood glucose concentration. A significant fall of the blood ketone body concentration was achieved with 2-(3-methyl-cinnamyl-hydrazono)-propionate or 2-(3-phenylpropoxyimino)-butyric acid, at dosages of 21 and 255 mumol/l, respectively. Furthermore there was a dose-dependent increase in the plasma free fatty acid concentration in the presence of 2-(3-methyl-cinnamyl-hydrazono)-propionate. This increase, however, was much less pronounced with 2-(3-phenylpropoxyimino)-butyric acid. Metabolic effects of 2-(3-methyl-cinnamyl-hydrazono)-propionate are consistent with an inhibition of long-chain fatty acid transport, whereas an additional mechanism of action has to be assumed for 2-(3-phenylpropoxyimino)-butyric acid.