{"title":"特征值与图分:一种平均情况分析","authors":"R. Boppana","doi":"10.1109/SFCS.1987.22","DOIUrl":null,"url":null,"abstract":"Graph Bisection is the problem of partitioning the vertices of a graph into two equal-size pieces so as to minimize the number of edges between the two pieces. This paper presents an algorithm that will, for almost all graphs in a certain class, output the minimum-size bisection. Furthermore the algorithm will yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm is based on computing eigenvalues and eigenvectors of matrices associated with the graph.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"396","resultStr":"{\"title\":\"Eigenvalues and graph bisection: An average-case analysis\",\"authors\":\"R. Boppana\",\"doi\":\"10.1109/SFCS.1987.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Bisection is the problem of partitioning the vertices of a graph into two equal-size pieces so as to minimize the number of edges between the two pieces. This paper presents an algorithm that will, for almost all graphs in a certain class, output the minimum-size bisection. Furthermore the algorithm will yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm is based on computing eigenvalues and eigenvectors of matrices associated with the graph.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"2020 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"396\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eigenvalues and graph bisection: An average-case analysis
Graph Bisection is the problem of partitioning the vertices of a graph into two equal-size pieces so as to minimize the number of edges between the two pieces. This paper presents an algorithm that will, for almost all graphs in a certain class, output the minimum-size bisection. Furthermore the algorithm will yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm is based on computing eigenvalues and eigenvectors of matrices associated with the graph.