特征值与图分:一种平均情况分析

R. Boppana
{"title":"特征值与图分:一种平均情况分析","authors":"R. Boppana","doi":"10.1109/SFCS.1987.22","DOIUrl":null,"url":null,"abstract":"Graph Bisection is the problem of partitioning the vertices of a graph into two equal-size pieces so as to minimize the number of edges between the two pieces. This paper presents an algorithm that will, for almost all graphs in a certain class, output the minimum-size bisection. Furthermore the algorithm will yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm is based on computing eigenvalues and eigenvectors of matrices associated with the graph.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"396","resultStr":"{\"title\":\"Eigenvalues and graph bisection: An average-case analysis\",\"authors\":\"R. Boppana\",\"doi\":\"10.1109/SFCS.1987.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Bisection is the problem of partitioning the vertices of a graph into two equal-size pieces so as to minimize the number of edges between the two pieces. This paper presents an algorithm that will, for almost all graphs in a certain class, output the minimum-size bisection. Furthermore the algorithm will yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm is based on computing eigenvalues and eigenvectors of matrices associated with the graph.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"2020 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"396\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 396

摘要

图平分是将图的顶点划分为大小相等的两个部分,以使两个部分之间的边数最少的问题。本文提出了一种算法,对于几乎所有的图在某一类,将输出最小大小的二分。此外,对于几乎所有这样的图,该算法将证明平分是最优的。该算法基于计算与图相关的矩阵的特征值和特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalues and graph bisection: An average-case analysis
Graph Bisection is the problem of partitioning the vertices of a graph into two equal-size pieces so as to minimize the number of edges between the two pieces. This paper presents an algorithm that will, for almost all graphs in a certain class, output the minimum-size bisection. Furthermore the algorithm will yield, for almost all such graphs, a proof that the bisection is optimal. The algorithm is based on computing eigenvalues and eigenvectors of matrices associated with the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信