预测治疗下败血症生物标志物进展

Ivan Stojkovic, Z. Obradovic
{"title":"预测治疗下败血症生物标志物进展","authors":"Ivan Stojkovic, Z. Obradovic","doi":"10.1109/CBMS.2017.16","DOIUrl":null,"url":null,"abstract":"Sepsis is a serious, life-threatening condition that presents a growing problem in medicine and health-care. It is characterized by quick progression and high variability in the disease manifestation, so treatment should be personalized and tailored to fit individual characteristics of a particular subject. That requires close monitoring of the patients state and reliable predictions of how the targeted therapy will affect sepsis progression over time. We have characterized predictive capabilities of a graph-based structured regression approach under hemoadsorption therapy by using a computational model of sepsis biomarker progression in rats. Results suggests that an extension of the model representational power by using a dense graph and multiple-step predictors increases predictive accuracy, allowing more appropriate choice of treatment.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Predicting Sepsis Biomarker Progression under Therapy\",\"authors\":\"Ivan Stojkovic, Z. Obradovic\",\"doi\":\"10.1109/CBMS.2017.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sepsis is a serious, life-threatening condition that presents a growing problem in medicine and health-care. It is characterized by quick progression and high variability in the disease manifestation, so treatment should be personalized and tailored to fit individual characteristics of a particular subject. That requires close monitoring of the patients state and reliable predictions of how the targeted therapy will affect sepsis progression over time. We have characterized predictive capabilities of a graph-based structured regression approach under hemoadsorption therapy by using a computational model of sepsis biomarker progression in rats. Results suggests that an extension of the model representational power by using a dense graph and multiple-step predictors increases predictive accuracy, allowing more appropriate choice of treatment.\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

败血症是一种严重的、危及生命的疾病,在医学和卫生保健领域呈现出日益严重的问题。它的特点是进展快,疾病表现的变异性高,因此治疗应个性化,并根据特定受试者的个体特征量身定制。这需要密切监测患者的状态,并可靠地预测靶向治疗如何随着时间的推移影响败血症的进展。我们通过使用大鼠脓毒症生物标志物进展的计算模型,表征了基于图的结构化回归方法在血液吸附治疗下的预测能力。结果表明,通过使用密集图和多步预测器来扩展模型的表征能力可以提高预测精度,从而允许更适当的处理选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Sepsis Biomarker Progression under Therapy
Sepsis is a serious, life-threatening condition that presents a growing problem in medicine and health-care. It is characterized by quick progression and high variability in the disease manifestation, so treatment should be personalized and tailored to fit individual characteristics of a particular subject. That requires close monitoring of the patients state and reliable predictions of how the targeted therapy will affect sepsis progression over time. We have characterized predictive capabilities of a graph-based structured regression approach under hemoadsorption therapy by using a computational model of sepsis biomarker progression in rats. Results suggests that an extension of the model representational power by using a dense graph and multiple-step predictors increases predictive accuracy, allowing more appropriate choice of treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信