{"title":"分数阶微分方程和系统的爆破结果","authors":"A. Hakem, M. Berbiche","doi":"10.2298/PIM1307173H","DOIUrl":null,"url":null,"abstract":"The aim of this research paper is to establish sufficient conditions for the nonexistence of global solutions for the following nonlinear fractional differential equation D �|t u + (−�) �/2 |u| m 1 u + a(x) � ∇|u| q 1 u = h(x,t)|u| p , (t,x) ∈ Q, u(0,x) = u0(x), x ∈ R N where (−�) �/2 , 0 < � < 2 is the fractional power of −�, and D �|t , (0 < � < 1) denotes the time-derivative of arbitrary � ∈ (0;1) in the sense of Caputo. The results are shown by the use of test function theory and extended to systems of the same type.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"BLOW UP RESULTS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AND SYSTEMS\",\"authors\":\"A. Hakem, M. Berbiche\",\"doi\":\"10.2298/PIM1307173H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this research paper is to establish sufficient conditions for the nonexistence of global solutions for the following nonlinear fractional differential equation D �|t u + (−�) �/2 |u| m 1 u + a(x) � ∇|u| q 1 u = h(x,t)|u| p , (t,x) ∈ Q, u(0,x) = u0(x), x ∈ R N where (−�) �/2 , 0 < � < 2 is the fractional power of −�, and D �|t , (0 < � < 1) denotes the time-derivative of arbitrary � ∈ (0;1) in the sense of Caputo. The results are shown by the use of test function theory and extended to systems of the same type.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1307173H\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1307173H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
本研究论文的目的是建立全球解决方案的充分条件不存在下列非线性分数微分方程D�| t u +(−)��m / 2 u | | 1 u + (x)�∇| |你问1 u = h (x, t) | | p (t, x)∈q、u (0, x) =情况(x) x∈R N,(−)��/ 2,0 <�< 2的部分力量−�,和D�| t(0 <�< 1)表示对任意�∈(0,1)卡普托的感觉。利用测试函数理论证明了这些结果,并将其推广到同类型的系统中。
BLOW UP RESULTS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AND SYSTEMS
The aim of this research paper is to establish sufficient conditions for the nonexistence of global solutions for the following nonlinear fractional differential equation D �|t u + (−�) �/2 |u| m 1 u + a(x) � ∇|u| q 1 u = h(x,t)|u| p , (t,x) ∈ Q, u(0,x) = u0(x), x ∈ R N where (−�) �/2 , 0 < � < 2 is the fractional power of −�, and D �|t , (0 < � < 1) denotes the time-derivative of arbitrary � ∈ (0;1) in the sense of Caputo. The results are shown by the use of test function theory and extended to systems of the same type.