异相无机/有机包合物界面边界处电能的量子积累

V. Maksymych, R. Shvets, F. Ivashchyshyn
{"title":"异相无机/有机包合物界面边界处电能的量子积累","authors":"V. Maksymych, R. Shvets, F. Ivashchyshyn","doi":"10.23939/jcpee2022.01.030","DOIUrl":null,"url":null,"abstract":"The work is devoted to the current problem of finding new ways and mechanisms of high-density electric energy accumulation. As a result of the conducted researches the system which allows to accumulate an electric charge at the expense of quantum effects and the phenomena without use of chemical reactions is offered. The basic idea was to form a material with a colossal area of the inner active surface with a sharply anisotropic chemical bonding character. Accordingly, the main goal was to create and study electrode materials based on intercalant heterophase structures with different types of hierarchy, capable of storing electrical energy at the quantum level. Based on the results of impedance spectroscopy, it was found that the obtained clathrate structures are promising for use as a cavitand electrode in a quantum battery, and, most importantly, can significantly increase its capacity","PeriodicalId":325908,"journal":{"name":"Computational Problems of Electrical Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum accumulation of electrical energy at interfacial boundaries in heterophase inorganic / organic clathrates\",\"authors\":\"V. Maksymych, R. Shvets, F. Ivashchyshyn\",\"doi\":\"10.23939/jcpee2022.01.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the current problem of finding new ways and mechanisms of high-density electric energy accumulation. As a result of the conducted researches the system which allows to accumulate an electric charge at the expense of quantum effects and the phenomena without use of chemical reactions is offered. The basic idea was to form a material with a colossal area of the inner active surface with a sharply anisotropic chemical bonding character. Accordingly, the main goal was to create and study electrode materials based on intercalant heterophase structures with different types of hierarchy, capable of storing electrical energy at the quantum level. Based on the results of impedance spectroscopy, it was found that the obtained clathrate structures are promising for use as a cavitand electrode in a quantum battery, and, most importantly, can significantly increase its capacity\",\"PeriodicalId\":325908,\"journal\":{\"name\":\"Computational Problems of Electrical Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Problems of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/jcpee2022.01.030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Problems of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jcpee2022.01.030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作致力于寻找高密度电能积累的新途径和新机制。根据所进行的研究,提供了一种不使用化学反应而以牺牲量子效应和现象为代价来积累电荷的系统。其基本思想是形成一种具有巨大内活性表面面积的材料,具有明显的各向异性化学键特性。因此,主要目标是创建和研究基于具有不同类型层次的插层异相结构的电极材料,能够在量子水平上存储电能。阻抗谱分析结果表明,所制备的包合物结构不仅可以作为量子电池的空腔和电极,而且可以显著提高量子电池的容量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum accumulation of electrical energy at interfacial boundaries in heterophase inorganic / organic clathrates
The work is devoted to the current problem of finding new ways and mechanisms of high-density electric energy accumulation. As a result of the conducted researches the system which allows to accumulate an electric charge at the expense of quantum effects and the phenomena without use of chemical reactions is offered. The basic idea was to form a material with a colossal area of the inner active surface with a sharply anisotropic chemical bonding character. Accordingly, the main goal was to create and study electrode materials based on intercalant heterophase structures with different types of hierarchy, capable of storing electrical energy at the quantum level. Based on the results of impedance spectroscopy, it was found that the obtained clathrate structures are promising for use as a cavitand electrode in a quantum battery, and, most importantly, can significantly increase its capacity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信