基于大数据的网络故障快速定位方法研究

Jun-Wei Huang, B. Jin, H. Meng, Dongling Xiao
{"title":"基于大数据的网络故障快速定位方法研究","authors":"Jun-Wei Huang, B. Jin, H. Meng, Dongling Xiao","doi":"10.1109/IWECAI50956.2020.00024","DOIUrl":null,"url":null,"abstract":"The stable and reliable operation of the power grid information system is the fundamental to ensure the safe production and optimal management of the power grid. In this paper, by obtaining the performance parameters of the system between load and response time, resource consumption, and introducing time, external time and other parameters for big data analysis, the performance trend analysis of throughput, error and response time is given, and the current situation and history of the system are analyzed Historical data comparison and performance bottleneck analysis can improve the level of information mining, quickly and accurately realize the location of network fault components and fault type and cause identification","PeriodicalId":364789,"journal":{"name":"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Fast Location Method of Network Fault Based on Big Data\",\"authors\":\"Jun-Wei Huang, B. Jin, H. Meng, Dongling Xiao\",\"doi\":\"10.1109/IWECAI50956.2020.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stable and reliable operation of the power grid information system is the fundamental to ensure the safe production and optimal management of the power grid. In this paper, by obtaining the performance parameters of the system between load and response time, resource consumption, and introducing time, external time and other parameters for big data analysis, the performance trend analysis of throughput, error and response time is given, and the current situation and history of the system are analyzed Historical data comparison and performance bottleneck analysis can improve the level of information mining, quickly and accurately realize the location of network fault components and fault type and cause identification\",\"PeriodicalId\":364789,\"journal\":{\"name\":\"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWECAI50956.2020.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWECAI50956.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电网信息系统的稳定可靠运行是保证电网安全生产和优化管理的根本。本文通过获取系统在负载和响应时间、资源消耗之间的性能参数,并引入时间、外部时间等参数进行大数据分析,给出吞吐量、误差和响应时间的性能趋势分析,并分析系统的现状和历史,历史数据对比和性能瓶颈分析可以提高信息挖掘的水平。快速准确地实现网络故障部件的定位和故障类型及原因的识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Fast Location Method of Network Fault Based on Big Data
The stable and reliable operation of the power grid information system is the fundamental to ensure the safe production and optimal management of the power grid. In this paper, by obtaining the performance parameters of the system between load and response time, resource consumption, and introducing time, external time and other parameters for big data analysis, the performance trend analysis of throughput, error and response time is given, and the current situation and history of the system are analyzed Historical data comparison and performance bottleneck analysis can improve the level of information mining, quickly and accurately realize the location of network fault components and fault type and cause identification
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信