种子节点在社会网络信息传播中的重要性:一个案例研究

Amitrajit Sarkar, Srijan Chattopadhyay, Paramita Dey, Sarbani Roy
{"title":"种子节点在社会网络信息传播中的重要性:一个案例研究","authors":"Amitrajit Sarkar, Srijan Chattopadhyay, Paramita Dey, Sarbani Roy","doi":"10.1109/COMSNETS.2017.7945410","DOIUrl":null,"url":null,"abstract":"In today's world, social media is a powerful tool: spreading information, and changing the way we receive news. It often reaches faster and farther than any any other channel. The availability of large scale data on online social media motivates our questions on social behavior in spreading information on the network. We conduct extensive experiments on Twitter data, to determine how important some people are in spreading information to the world. The Twitter data used in this study is stored on an HDFS and manipulated using algorithms framed in the MapReduce paradigm of Hadoop. An information flow network is generated from the Twitter data (81540798 tweets) based on the hashtags #Brexit, #Euro and #Rio. We study the effectiveness of K-core and PageRank algorithms in identifying important seeds in social networks, by comparing their outputs against the true seeds obtained from the two-phase algorithm. K-core performs better by most similarity indices, when compared to PageRank.","PeriodicalId":168357,"journal":{"name":"2017 9th International Conference on Communication Systems and Networks (COMSNETS)","volume":"719 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The importance of seed nodes in spreading information in social networks: A case study\",\"authors\":\"Amitrajit Sarkar, Srijan Chattopadhyay, Paramita Dey, Sarbani Roy\",\"doi\":\"10.1109/COMSNETS.2017.7945410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's world, social media is a powerful tool: spreading information, and changing the way we receive news. It often reaches faster and farther than any any other channel. The availability of large scale data on online social media motivates our questions on social behavior in spreading information on the network. We conduct extensive experiments on Twitter data, to determine how important some people are in spreading information to the world. The Twitter data used in this study is stored on an HDFS and manipulated using algorithms framed in the MapReduce paradigm of Hadoop. An information flow network is generated from the Twitter data (81540798 tweets) based on the hashtags #Brexit, #Euro and #Rio. We study the effectiveness of K-core and PageRank algorithms in identifying important seeds in social networks, by comparing their outputs against the true seeds obtained from the two-phase algorithm. K-core performs better by most similarity indices, when compared to PageRank.\",\"PeriodicalId\":168357,\"journal\":{\"name\":\"2017 9th International Conference on Communication Systems and Networks (COMSNETS)\",\"volume\":\"719 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Communication Systems and Networks (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS.2017.7945410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2017.7945410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在当今世界,社交媒体是一个强大的工具:传播信息,改变我们接收新闻的方式。它通常比任何其他通道到达得更快更远。在线社交媒体上大量数据的可用性激发了我们对网络上传播信息的社会行为的质疑。我们对Twitter数据进行了广泛的实验,以确定一些人在向世界传播信息方面有多重要。本研究中使用的Twitter数据存储在HDFS上,并使用Hadoop的MapReduce范式框架中的算法进行操作。基于#Brexit, #Euro和#Rio标签,从Twitter数据(81540798条推文)生成信息流网络。我们通过将K-core和PageRank算法的输出与两阶段算法获得的真实种子进行比较,研究了K-core和PageRank算法在识别社交网络中重要种子方面的有效性。与PageRank相比,K-core在大多数相似度指标上表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The importance of seed nodes in spreading information in social networks: A case study
In today's world, social media is a powerful tool: spreading information, and changing the way we receive news. It often reaches faster and farther than any any other channel. The availability of large scale data on online social media motivates our questions on social behavior in spreading information on the network. We conduct extensive experiments on Twitter data, to determine how important some people are in spreading information to the world. The Twitter data used in this study is stored on an HDFS and manipulated using algorithms framed in the MapReduce paradigm of Hadoop. An information flow network is generated from the Twitter data (81540798 tweets) based on the hashtags #Brexit, #Euro and #Rio. We study the effectiveness of K-core and PageRank algorithms in identifying important seeds in social networks, by comparing their outputs against the true seeds obtained from the two-phase algorithm. K-core performs better by most similarity indices, when compared to PageRank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信