数据聚类技术对基于数据的wsn拓扑形成的影响分析

M. Lino, C. Montez, E. Leão, Ricardo Lira
{"title":"数据聚类技术对基于数据的wsn拓扑形成的影响分析","authors":"M. Lino, C. Montez, E. Leão, Ricardo Lira","doi":"10.1109/INDIN51773.2022.9976088","DOIUrl":null,"url":null,"abstract":"Leveraged by IoT and Industry 4.0 solutions, Wireless Sensor Networks (WSNs) have been proposed as an important alternative for large-scale monitoring applications. Such technology provides sensor nodes with the intelligent and autonomous ability to monitor large areas, create self-organizing structures, detect events and process massive data. In this context, data-driven schemes are increasingly needed. For this, some data clustering techniques (DCTs) are used to tackle common problems in WSNs; however, the vast majority of techniques do not consider the data monitored by the sensors to perform topological changes and provide better network structures. This work addresses an architecture for this type of application and evaluates the impact of different DCTs on network performance and the creation of priority node groups.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact Analysis of Data Clustering Techniques for Data-Based Topological Formation in WSNs\",\"authors\":\"M. Lino, C. Montez, E. Leão, Ricardo Lira\",\"doi\":\"10.1109/INDIN51773.2022.9976088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraged by IoT and Industry 4.0 solutions, Wireless Sensor Networks (WSNs) have been proposed as an important alternative for large-scale monitoring applications. Such technology provides sensor nodes with the intelligent and autonomous ability to monitor large areas, create self-organizing structures, detect events and process massive data. In this context, data-driven schemes are increasingly needed. For this, some data clustering techniques (DCTs) are used to tackle common problems in WSNs; however, the vast majority of techniques do not consider the data monitored by the sensors to perform topological changes and provide better network structures. This work addresses an architecture for this type of application and evaluates the impact of different DCTs on network performance and the creation of priority node groups.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用物联网和工业4.0解决方案,无线传感器网络(wsn)已被提出作为大规模监控应用的重要替代方案。这种技术为传感器节点提供了智能和自主的能力,可以监控大面积,创建自组织结构,检测事件和处理大量数据。在这种情况下,越来越需要数据驱动的方案。为此,一些数据聚类技术(dct)被用于解决无线传感器网络中的常见问题;然而,绝大多数技术都没有考虑到传感器监测的数据进行拓扑变化,从而提供更好的网络结构。这项工作解决了这类应用程序的体系结构,并评估了不同dct对网络性能和创建优先节点组的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact Analysis of Data Clustering Techniques for Data-Based Topological Formation in WSNs
Leveraged by IoT and Industry 4.0 solutions, Wireless Sensor Networks (WSNs) have been proposed as an important alternative for large-scale monitoring applications. Such technology provides sensor nodes with the intelligent and autonomous ability to monitor large areas, create self-organizing structures, detect events and process massive data. In this context, data-driven schemes are increasingly needed. For this, some data clustering techniques (DCTs) are used to tackle common problems in WSNs; however, the vast majority of techniques do not consider the data monitored by the sensors to perform topological changes and provide better network structures. This work addresses an architecture for this type of application and evaluates the impact of different DCTs on network performance and the creation of priority node groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信