Hadamard积的Kippenhahn曲线的性质及其应用

Guangyuan Zhao
{"title":"Hadamard积的Kippenhahn曲线的性质及其应用","authors":"Guangyuan Zhao","doi":"10.1109/ICCTD.2009.219","DOIUrl":null,"url":null,"abstract":"In this paper, and will denote reducible companion matrices. we combine the Kronecker product, Hadamard product with numerical rang of matrices, discuss the relations between the Kronecker product, Hadamard product with numerical rang of matrices, and illustrate that the kippenhahn curve consists of consists of one ellipse whose foci are and axis has a length .","PeriodicalId":269403,"journal":{"name":"2009 International Conference on Computer Technology and Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Property of Kippenhahn Curves of Hadamard Products and Applications\",\"authors\":\"Guangyuan Zhao\",\"doi\":\"10.1109/ICCTD.2009.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, and will denote reducible companion matrices. we combine the Kronecker product, Hadamard product with numerical rang of matrices, discuss the relations between the Kronecker product, Hadamard product with numerical rang of matrices, and illustrate that the kippenhahn curve consists of consists of one ellipse whose foci are and axis has a length .\",\"PeriodicalId\":269403,\"journal\":{\"name\":\"2009 International Conference on Computer Technology and Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computer Technology and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTD.2009.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computer Technology and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTD.2009.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,和表示可约伴矩阵。将Kronecker积、Hadamard积与矩阵的数值范围结合起来,讨论了Kronecker积、Hadamard积与矩阵的数值范围的关系,说明了kippenhahn曲线由一个椭圆组成,椭圆的焦点为,轴为长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Property of Kippenhahn Curves of Hadamard Products and Applications
In this paper, and will denote reducible companion matrices. we combine the Kronecker product, Hadamard product with numerical rang of matrices, discuss the relations between the Kronecker product, Hadamard product with numerical rang of matrices, and illustrate that the kippenhahn curve consists of consists of one ellipse whose foci are and axis has a length .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信