预测慢性脑卒中患者的腕关节运动轨迹

M. Spüler, W. Rosenstiel, M. Bogdan
{"title":"预测慢性脑卒中患者的腕关节运动轨迹","authors":"M. Spüler, W. Rosenstiel, M. Bogdan","doi":"10.5220/0005165200380045","DOIUrl":null,"url":null,"abstract":"Recently, there have been several approaches to utilize a Brain-Computer Interface (BCI) for chronic stroke patients. The prediction of movement trajectory based on recorded brain activity could thereby help to improve BCI-guided stroke rehabilitation or could be used for control of an assistive device, like an orthosis or a robotic arm. One problem in predicting movement trajectory in stroke patients are compensatory movements, which make it difficult to link specific brain activity to movement intention. In this paper we compare different methods for trajectory prediction and show how Canonical Correlation Analysis (CCA) can be used to predict movement trajectories. Based on the results, we argue that the resulting trajectory prediction is closer to the actual movement intention. We further show how the transformation matrices obtained by CCA can be interpreted and discuss how this interpretation might be useful to get information regarding compensatory movements in stroke and the underlying patterns of brain activity.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predicting Wrist Movement Trajectory from Ipsilesional ECoG in Chronic Stroke Patients\",\"authors\":\"M. Spüler, W. Rosenstiel, M. Bogdan\",\"doi\":\"10.5220/0005165200380045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there have been several approaches to utilize a Brain-Computer Interface (BCI) for chronic stroke patients. The prediction of movement trajectory based on recorded brain activity could thereby help to improve BCI-guided stroke rehabilitation or could be used for control of an assistive device, like an orthosis or a robotic arm. One problem in predicting movement trajectory in stroke patients are compensatory movements, which make it difficult to link specific brain activity to movement intention. In this paper we compare different methods for trajectory prediction and show how Canonical Correlation Analysis (CCA) can be used to predict movement trajectories. Based on the results, we argue that the resulting trajectory prediction is closer to the actual movement intention. We further show how the transformation matrices obtained by CCA can be interpreted and discuss how this interpretation might be useful to get information regarding compensatory movements in stroke and the underlying patterns of brain activity.\",\"PeriodicalId\":167011,\"journal\":{\"name\":\"International Congress on Neurotechnology, Electronics and Informatics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Congress on Neurotechnology, Electronics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005165200380045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005165200380045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近,有几种方法利用脑机接口(BCI)治疗慢性中风患者。基于大脑活动记录的运动轨迹预测可以帮助改善脑机接口引导的中风康复,或者可以用于控制辅助设备,如矫形器或机械臂。预测中风患者运动轨迹的一个问题是代偿性运动,这使得很难将特定的大脑活动与运动意图联系起来。在本文中,我们比较了不同的轨迹预测方法,并展示了如何使用典型相关分析(CCA)来预测运动轨迹。基于这些结果,我们认为得到的轨迹预测更接近于实际的运动意图。我们进一步展示了如何解释CCA获得的转换矩阵,并讨论了这种解释如何有助于获得有关中风代偿运动和大脑活动潜在模式的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Wrist Movement Trajectory from Ipsilesional ECoG in Chronic Stroke Patients
Recently, there have been several approaches to utilize a Brain-Computer Interface (BCI) for chronic stroke patients. The prediction of movement trajectory based on recorded brain activity could thereby help to improve BCI-guided stroke rehabilitation or could be used for control of an assistive device, like an orthosis or a robotic arm. One problem in predicting movement trajectory in stroke patients are compensatory movements, which make it difficult to link specific brain activity to movement intention. In this paper we compare different methods for trajectory prediction and show how Canonical Correlation Analysis (CCA) can be used to predict movement trajectories. Based on the results, we argue that the resulting trajectory prediction is closer to the actual movement intention. We further show how the transformation matrices obtained by CCA can be interpreted and discuss how this interpretation might be useful to get information regarding compensatory movements in stroke and the underlying patterns of brain activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信