基于粒子群和概率数据关联的图像跟踪

E. Kao, Peter VanMaasdam, John W. Sheppard
{"title":"基于粒子群和概率数据关联的图像跟踪","authors":"E. Kao, Peter VanMaasdam, John W. Sheppard","doi":"10.1109/SIS.2008.4668297","DOIUrl":null,"url":null,"abstract":"The process of automatically tracking people within video sequences is currently receiving a great deal of interest within the computer vision research community. In this paper we contrast the performance of the popular Mean-Shift algorithmpsilas gradient descent based search strategy with a more advanced swarm intelligence technique. Towards this end, we propose the use of a Particle Swarm Optimization (PSO) algorithm to replace the gradient descent search, and also combine the swarm based search strategy with a Probabilistic Data Association Filter (PDAF) state estimator to perform the track association and maintenance stages. Performance is shown against a variety of data sets, ranging from easy to complex. The PSO-PDAF approach is seen to outperform both the Mean-Shift + Kalman filter and the single-measurement PSO + Kalman filter approach. However, PSOpsilas robustness to low contrast and occlusion comes at the cost of higher computational requirements.","PeriodicalId":178251,"journal":{"name":"2008 IEEE Swarm Intelligence Symposium","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Image-based tracking with Particle Swarms and Probabilistic Data Association\",\"authors\":\"E. Kao, Peter VanMaasdam, John W. Sheppard\",\"doi\":\"10.1109/SIS.2008.4668297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of automatically tracking people within video sequences is currently receiving a great deal of interest within the computer vision research community. In this paper we contrast the performance of the popular Mean-Shift algorithmpsilas gradient descent based search strategy with a more advanced swarm intelligence technique. Towards this end, we propose the use of a Particle Swarm Optimization (PSO) algorithm to replace the gradient descent search, and also combine the swarm based search strategy with a Probabilistic Data Association Filter (PDAF) state estimator to perform the track association and maintenance stages. Performance is shown against a variety of data sets, ranging from easy to complex. The PSO-PDAF approach is seen to outperform both the Mean-Shift + Kalman filter and the single-measurement PSO + Kalman filter approach. However, PSOpsilas robustness to low contrast and occlusion comes at the cost of higher computational requirements.\",\"PeriodicalId\":178251,\"journal\":{\"name\":\"2008 IEEE Swarm Intelligence Symposium\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Swarm Intelligence Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2008.4668297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Swarm Intelligence Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2008.4668297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在视频序列中自动跟踪人的过程目前在计算机视觉研究社区中引起了极大的兴趣。在本文中,我们对比了流行的Mean-Shift算法和基于梯度下降的搜索策略与更先进的群体智能技术的性能。为此,我们提出使用粒子群优化(PSO)算法来代替梯度下降搜索,并将基于群的搜索策略与概率数据关联过滤器(PDAF)状态估计器相结合来执行轨道关联和维护阶段。性能是根据从简单到复杂的各种数据集显示的。PSO- pdaf方法被认为优于Mean-Shift +卡尔曼滤波器和单测量PSO +卡尔曼滤波器方法。然而,PSOpsilas对低对比度和遮挡的鲁棒性是以更高的计算需求为代价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-based tracking with Particle Swarms and Probabilistic Data Association
The process of automatically tracking people within video sequences is currently receiving a great deal of interest within the computer vision research community. In this paper we contrast the performance of the popular Mean-Shift algorithmpsilas gradient descent based search strategy with a more advanced swarm intelligence technique. Towards this end, we propose the use of a Particle Swarm Optimization (PSO) algorithm to replace the gradient descent search, and also combine the swarm based search strategy with a Probabilistic Data Association Filter (PDAF) state estimator to perform the track association and maintenance stages. Performance is shown against a variety of data sets, ranging from easy to complex. The PSO-PDAF approach is seen to outperform both the Mean-Shift + Kalman filter and the single-measurement PSO + Kalman filter approach. However, PSOpsilas robustness to low contrast and occlusion comes at the cost of higher computational requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信