采用遗传算法的紧凑建模方法进行精确的热模拟

T. Nishio, Y. Yamada, K. Koyamada
{"title":"采用遗传算法的紧凑建模方法进行精确的热模拟","authors":"T. Nishio, Y. Yamada, K. Koyamada","doi":"10.1109/IEMTIM.1998.704552","DOIUrl":null,"url":null,"abstract":"The rapid improvement in computer performance is intensifying the component thermal problem. It is becoming increasingly important for an optimal thermal design that thermal simulation is part of the design. Simplification of the thermal simulation model is inevitable as an enormous number of finite elements are required when the original CAD data set is adopted for modeling. However, the reduction of calculation time by model simplification and the maintenance of calculation accuracy are contradictory. Conventionally, model simplification is by empirical judgment, but a rational simplification technique using boundary conditions and material properties results in a more accurate and reliable calculation. Although simplification of the LSI component modeling method has been proposed by the Delphi project, it is difficult to apply other than to components, such as a keyboard. This paper proposes a new technique to generate the compact model of a keyboard with the required accuracy. First, some candidates for the simplified configurations are prepared. A genetic algorithm is proposed to identify the variables such as the boundary conditions and thermal conductivities that are most important in a high accuracy calculation. Finally, the optimum compact model which has the required accuracy is selected from the simplified models.","PeriodicalId":260028,"journal":{"name":"2nd 1998 IEMT/IMC Symposium (IEEE Cat. No.98EX225)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A compact modeling approach using a genetic algorithm for accurate thermal simulation\",\"authors\":\"T. Nishio, Y. Yamada, K. Koyamada\",\"doi\":\"10.1109/IEMTIM.1998.704552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid improvement in computer performance is intensifying the component thermal problem. It is becoming increasingly important for an optimal thermal design that thermal simulation is part of the design. Simplification of the thermal simulation model is inevitable as an enormous number of finite elements are required when the original CAD data set is adopted for modeling. However, the reduction of calculation time by model simplification and the maintenance of calculation accuracy are contradictory. Conventionally, model simplification is by empirical judgment, but a rational simplification technique using boundary conditions and material properties results in a more accurate and reliable calculation. Although simplification of the LSI component modeling method has been proposed by the Delphi project, it is difficult to apply other than to components, such as a keyboard. This paper proposes a new technique to generate the compact model of a keyboard with the required accuracy. First, some candidates for the simplified configurations are prepared. A genetic algorithm is proposed to identify the variables such as the boundary conditions and thermal conductivities that are most important in a high accuracy calculation. Finally, the optimum compact model which has the required accuracy is selected from the simplified models.\",\"PeriodicalId\":260028,\"journal\":{\"name\":\"2nd 1998 IEMT/IMC Symposium (IEEE Cat. No.98EX225)\",\"volume\":\"249 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd 1998 IEMT/IMC Symposium (IEEE Cat. No.98EX225)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMTIM.1998.704552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd 1998 IEMT/IMC Symposium (IEEE Cat. No.98EX225)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTIM.1998.704552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算机性能的快速提高加剧了部件的热问题。热模拟作为设计的一部分,对于优化热设计变得越来越重要。采用原始CAD数据集进行建模时,由于需要大量的有限元,热仿真模型的简化是不可避免的。然而,通过模型简化来减少计算时间与保持计算精度是矛盾的。传统上,模型简化是通过经验判断,但利用边界条件和材料特性的合理简化技术可以使计算更加准确和可靠。虽然简化的LSI元件建模方法已经由Delphi项目提出,但它很难应用于其他组件,如键盘。本文提出了一种生成精度要求较高的键盘紧凑模型的新方法。首先,准备了一些简化构型的候选体。提出了一种遗传算法来识别边界条件和热导率等对高精度计算至关重要的变量。最后,从简化模型中选择出精度要求较高的最优紧凑模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compact modeling approach using a genetic algorithm for accurate thermal simulation
The rapid improvement in computer performance is intensifying the component thermal problem. It is becoming increasingly important for an optimal thermal design that thermal simulation is part of the design. Simplification of the thermal simulation model is inevitable as an enormous number of finite elements are required when the original CAD data set is adopted for modeling. However, the reduction of calculation time by model simplification and the maintenance of calculation accuracy are contradictory. Conventionally, model simplification is by empirical judgment, but a rational simplification technique using boundary conditions and material properties results in a more accurate and reliable calculation. Although simplification of the LSI component modeling method has been proposed by the Delphi project, it is difficult to apply other than to components, such as a keyboard. This paper proposes a new technique to generate the compact model of a keyboard with the required accuracy. First, some candidates for the simplified configurations are prepared. A genetic algorithm is proposed to identify the variables such as the boundary conditions and thermal conductivities that are most important in a high accuracy calculation. Finally, the optimum compact model which has the required accuracy is selected from the simplified models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信