基于隐马尔可夫模型的磁性支票字符自动识别

D. Strydom, J. du Preez, S. Mostert
{"title":"基于隐马尔可夫模型的磁性支票字符自动识别","authors":"D. Strydom, J. du Preez, S. Mostert","doi":"10.1109/COMSIG.1993.365866","DOIUrl":null,"url":null,"abstract":"Given a signal with a distinct pattern, one can easily define a model that represents such a signal as a sequence of states each with unique features. The models are hidden Markov models (HMM) configured in the most obvious way dependent only on the segmentation technique suggested. Each segment represents a state in the HMM. Models are proposed for recognition purposes.<<ETX>>","PeriodicalId":398160,"journal":{"name":"1993 IEEE South African Symposium on Communications and Signal Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic recognition of magnetic cheque characters with hidden Markov models\",\"authors\":\"D. Strydom, J. du Preez, S. Mostert\",\"doi\":\"10.1109/COMSIG.1993.365866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a signal with a distinct pattern, one can easily define a model that represents such a signal as a sequence of states each with unique features. The models are hidden Markov models (HMM) configured in the most obvious way dependent only on the segmentation technique suggested. Each segment represents a state in the HMM. Models are proposed for recognition purposes.<<ETX>>\",\"PeriodicalId\":398160,\"journal\":{\"name\":\"1993 IEEE South African Symposium on Communications and Signal Processing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE South African Symposium on Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSIG.1993.365866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE South African Symposium on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1993.365866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有独特模式的信号,可以很容易地定义一个模型,将这种信号表示为具有独特特征的状态序列。模型是隐马尔可夫模型(HMM),其配置方式仅依赖于建议的分割技术。每个段代表HMM中的一种状态。提出模型是为了识别目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic recognition of magnetic cheque characters with hidden Markov models
Given a signal with a distinct pattern, one can easily define a model that represents such a signal as a sequence of states each with unique features. The models are hidden Markov models (HMM) configured in the most obvious way dependent only on the segmentation technique suggested. Each segment represents a state in the HMM. Models are proposed for recognition purposes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信