一种火焰传播的保守自适应方法

B. Larrouturou
{"title":"一种火焰传播的保守自适应方法","authors":"B. Larrouturou","doi":"10.1137/0910045","DOIUrl":null,"url":null,"abstract":"An adaptive one-dimensional finite-difference method aimed at the solution of flame-propagation problems is presented. This method uses a classical finite-difference approximation on a moving adaptive mesh. The discrete conservation of the variables is imposed for both the node displacements that occur at each timestep and for the interpolations that are performed at some time levels, when a static grid adaption is done. In particular, an interpolation procedure is presented that is conservative and also has the advantages of preserving the positivity and monotonicity of the interpolated variables.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A conservative adaptive method for flame propagation\",\"authors\":\"B. Larrouturou\",\"doi\":\"10.1137/0910045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive one-dimensional finite-difference method aimed at the solution of flame-propagation problems is presented. This method uses a classical finite-difference approximation on a moving adaptive mesh. The discrete conservation of the variables is imposed for both the node displacements that occur at each timestep and for the interpolations that are performed at some time levels, when a static grid adaption is done. In particular, an interpolation procedure is presented that is conservative and also has the advantages of preserving the positivity and monotonicity of the interpolated variables.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对火焰传播问题,提出了一种自适应一维有限差分法。该方法对运动自适应网格采用经典的有限差分逼近。对于每个时间步发生的节点位移和在某些时间级别执行的插值(当完成静态网格适应时),都施加了变量的离散守恒。特别地,提出了一种保守的插值方法,它既能保持插值变量的正单调性,又能保持插值变量的正单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A conservative adaptive method for flame propagation
An adaptive one-dimensional finite-difference method aimed at the solution of flame-propagation problems is presented. This method uses a classical finite-difference approximation on a moving adaptive mesh. The discrete conservation of the variables is imposed for both the node displacements that occur at each timestep and for the interpolations that are performed at some time levels, when a static grid adaption is done. In particular, an interpolation procedure is presented that is conservative and also has the advantages of preserving the positivity and monotonicity of the interpolated variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信