通过软分组改进的局部特征描述符

Feng Tang, Suk Hwan Lim, Nelson L. Chang
{"title":"通过软分组改进的局部特征描述符","authors":"Feng Tang, Suk Hwan Lim, Nelson L. Chang","doi":"10.1109/ICIP.2010.5653536","DOIUrl":null,"url":null,"abstract":"We describe a robust feature descriptor called soft ordinal spatial intensity distribution (soft OSID) that is invariant to any monotonically increasing brightness changes. In traditional histogram-based feature descriptors, each pixel is explicitly assigned to a single histogram bin, making them not robust to image deformations and appearance changes. In this paper, we present a feature descriptor that is obtained by assigning each pixel to more than one bin where the fraction is determined by a weight function to put more weight on close bins. This makes the descriptor more robust to image changes like viewpoint changes, image blur, and JPEG compression. Extensive experiments show that the proposed descriptor significantly outperforms many state-of-the-art descriptors such as OSID, SIFT, GLOH, and PCA-SIFT under complex brightness changes. The proposed descriptor has far reaching implications for many applications in computer vision.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An improved local feature descriptor via soft binning\",\"authors\":\"Feng Tang, Suk Hwan Lim, Nelson L. Chang\",\"doi\":\"10.1109/ICIP.2010.5653536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a robust feature descriptor called soft ordinal spatial intensity distribution (soft OSID) that is invariant to any monotonically increasing brightness changes. In traditional histogram-based feature descriptors, each pixel is explicitly assigned to a single histogram bin, making them not robust to image deformations and appearance changes. In this paper, we present a feature descriptor that is obtained by assigning each pixel to more than one bin where the fraction is determined by a weight function to put more weight on close bins. This makes the descriptor more robust to image changes like viewpoint changes, image blur, and JPEG compression. Extensive experiments show that the proposed descriptor significantly outperforms many state-of-the-art descriptors such as OSID, SIFT, GLOH, and PCA-SIFT under complex brightness changes. The proposed descriptor has far reaching implications for many applications in computer vision.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5653536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5653536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们描述了一种鲁棒的特征描述符,称为软有序空间强度分布(软OSID),它对任何单调增加的亮度变化都是不变的。在传统的基于直方图的特征描述符中,每个像素都被明确地分配到单个直方图bin中,这使得它们对图像变形和外观变化不具有鲁棒性。在本文中,我们提出了一个特征描述符,该特征描述符通过将每个像素分配给多个bin来获得,其中分数由权重函数确定,以便将更多的权重放在接近的bin上。这使得描述符对图像更改(如视点更改、图像模糊和JPEG压缩)更加健壮。大量的实验表明,在复杂的亮度变化下,所提出的描述符明显优于许多最先进的描述符,如OSID、SIFT、GLOH和PCA-SIFT。所提出的描述符对计算机视觉中的许多应用具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved local feature descriptor via soft binning
We describe a robust feature descriptor called soft ordinal spatial intensity distribution (soft OSID) that is invariant to any monotonically increasing brightness changes. In traditional histogram-based feature descriptors, each pixel is explicitly assigned to a single histogram bin, making them not robust to image deformations and appearance changes. In this paper, we present a feature descriptor that is obtained by assigning each pixel to more than one bin where the fraction is determined by a weight function to put more weight on close bins. This makes the descriptor more robust to image changes like viewpoint changes, image blur, and JPEG compression. Extensive experiments show that the proposed descriptor significantly outperforms many state-of-the-art descriptors such as OSID, SIFT, GLOH, and PCA-SIFT under complex brightness changes. The proposed descriptor has far reaching implications for many applications in computer vision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信