融合追踪属性时的信念融合、吝啬概率和信息内容

John J. Sudano
{"title":"融合追踪属性时的信念融合、吝啬概率和信息内容","authors":"John J. Sudano","doi":"10.1109/NRC.2004.1316425","DOIUrl":null,"url":null,"abstract":"In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":"1975 7‐8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Belief fusion, pignistic probabilities, and information content in fusing tracking attributes\",\"authors\":\"John J. Sudano\",\"doi\":\"10.1109/NRC.2004.1316425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.\",\"PeriodicalId\":268965,\"journal\":{\"name\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"volume\":\"1975 7‐8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2004.1316425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在信息融合系统的设计中,降低计算复杂度是实时实施的一个关键设计参数。简化计算的一种方法是将系统分解为非相关信息成分的子系统,如定性信息成分、定量信息成分和补充信息成分。概率信息含量(PIC)变量为任意一组系统或子系统概率分布赋予一个信息含量值。PIC 变量是根据概率分布计算出的归一化熵。本文推导了由补码概率代表的子系统的 PIC 变量。本文还推导了子系统组件的 PIC 变量与系统信息 PIC 变量之间的关系。本文提出了一系列估计任何信念数据集概率的信念概率变换。介绍了结合独立多源信念的广义信念融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Belief fusion, pignistic probabilities, and information content in fusing tracking attributes
In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信