b-Banach空间中的一致有界性定理

Jiachen Lv, Yuqiang Feng
{"title":"b-Banach空间中的一致有界性定理","authors":"Jiachen Lv, Yuqiang Feng","doi":"10.54647/mathematics11256","DOIUrl":null,"url":null,"abstract":"B-Banach space is an extension of Banach space, which provides a suitable framework for studying many analytical problems. The uniform boundedness theorem is is the basic theorem in functional analysis and has many important applications in many field, such as matrix analysis, operator theory, and numerical analysis. In this note, we revisit the concept of b-Banach space, and then establish the uniform boundedness theorem for linear operators. The result may be useful to establish linear operator theory in b-Banach space","PeriodicalId":380124,"journal":{"name":"SCIREA Journal of Mathematics","volume":"134 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The uniform boundedness theorem in b-Banach space\",\"authors\":\"Jiachen Lv, Yuqiang Feng\",\"doi\":\"10.54647/mathematics11256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"B-Banach space is an extension of Banach space, which provides a suitable framework for studying many analytical problems. The uniform boundedness theorem is is the basic theorem in functional analysis and has many important applications in many field, such as matrix analysis, operator theory, and numerical analysis. In this note, we revisit the concept of b-Banach space, and then establish the uniform boundedness theorem for linear operators. The result may be useful to establish linear operator theory in b-Banach space\",\"PeriodicalId\":380124,\"journal\":{\"name\":\"SCIREA Journal of Mathematics\",\"volume\":\"134 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCIREA Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54647/mathematics11256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCIREA Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54647/mathematics11256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

B-Banach空间是Banach空间的扩展,它为研究许多解析问题提供了一个合适的框架。一致有界性定理是泛函分析中的基本定理,在矩阵分析、算符理论和数值分析等许多领域都有重要的应用。本文重新讨论了b-Banach空间的概念,建立了线性算子的一致有界性定理。该结果对建立b-Banach空间中的线性算子理论具有一定的指导意义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The uniform boundedness theorem in b-Banach space
B-Banach space is an extension of Banach space, which provides a suitable framework for studying many analytical problems. The uniform boundedness theorem is is the basic theorem in functional analysis and has many important applications in many field, such as matrix analysis, operator theory, and numerical analysis. In this note, we revisit the concept of b-Banach space, and then establish the uniform boundedness theorem for linear operators. The result may be useful to establish linear operator theory in b-Banach space
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信