利用人工神经网络优化推文中的阿拉伯语讽刺检测

Ahmed Omar, A. Hassanien
{"title":"利用人工神经网络优化推文中的阿拉伯语讽刺检测","authors":"Ahmed Omar, A. Hassanien","doi":"10.1109/icci54321.2022.9756102","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized Arabic sarcasm classification model using artificial neural networks in conjunction with particle swarm optimization. Artificial Neural Networks (ANNs) are used to learn the extracted feature representation of a given text. Term frequency with inverse document frequency (TFIDF) is adapted for feature extraction and text transformation into numerical values. Particle Swarm Optimization (PSO) selects the most relevant features to optimize classification performance. Experiments show that the classification accuracy is optimized after using PSO from 82.12% to 86.85%.","PeriodicalId":122550,"journal":{"name":"2022 5th International Conference on Computing and Informatics (ICCI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimized Arabic Sarcasm Detection in Tweets using Artificial Neural Networks\",\"authors\":\"Ahmed Omar, A. Hassanien\",\"doi\":\"10.1109/icci54321.2022.9756102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimized Arabic sarcasm classification model using artificial neural networks in conjunction with particle swarm optimization. Artificial Neural Networks (ANNs) are used to learn the extracted feature representation of a given text. Term frequency with inverse document frequency (TFIDF) is adapted for feature extraction and text transformation into numerical values. Particle Swarm Optimization (PSO) selects the most relevant features to optimize classification performance. Experiments show that the classification accuracy is optimized after using PSO from 82.12% to 86.85%.\",\"PeriodicalId\":122550,\"journal\":{\"name\":\"2022 5th International Conference on Computing and Informatics (ICCI)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Computing and Informatics (ICCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icci54321.2022.9756102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Computing and Informatics (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icci54321.2022.9756102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种结合粒子群算法的人工神经网络优化的阿拉伯语讽刺语分类模型。人工神经网络(ann)用于学习提取的给定文本的特征表示。基于逆文档频率(TFIDF)的词频适用于特征提取和文本数值转换。粒子群算法(Particle Swarm Optimization, PSO)选择最相关的特征来优化分类性能。实验表明,采用粒子群算法后,分类准确率从82.12%提高到86.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Arabic Sarcasm Detection in Tweets using Artificial Neural Networks
This paper presents an optimized Arabic sarcasm classification model using artificial neural networks in conjunction with particle swarm optimization. Artificial Neural Networks (ANNs) are used to learn the extracted feature representation of a given text. Term frequency with inverse document frequency (TFIDF) is adapted for feature extraction and text transformation into numerical values. Particle Swarm Optimization (PSO) selects the most relevant features to optimize classification performance. Experiments show that the classification accuracy is optimized after using PSO from 82.12% to 86.85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信