使用参考和自动抄本的广播新闻讲话片段识别

F. Liu, Yang Liu
{"title":"使用参考和自动抄本的广播新闻讲话片段识别","authors":"F. Liu, Yang Liu","doi":"10.1109/ASRU.2007.4430189","DOIUrl":null,"url":null,"abstract":"Soundbite identification in broadcast news is important for locating information useful for question answering, mining opinions of a particular person, and enriching speech recognition output with quotation marks. This paper presents a systematic study of this problem under a classification framework, including problem formulation for classification, feature extraction, and the effect of using automatic speech recognition (ASR) output and automatic sentence boundary detection. Our experiments on a Mandarin broadcast news speech corpus show that the three-way classification framework outperforms the binary classification. The entropy-based feature weighting method generally performs better than others. Using ASR output degrades system performance, with more degradation observed from using automatic sentence segmentation than speech recognition errors for this task, especially on the recall rate.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Soundbite identification using reference and automatic transcripts of broadcast news speech\",\"authors\":\"F. Liu, Yang Liu\",\"doi\":\"10.1109/ASRU.2007.4430189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soundbite identification in broadcast news is important for locating information useful for question answering, mining opinions of a particular person, and enriching speech recognition output with quotation marks. This paper presents a systematic study of this problem under a classification framework, including problem formulation for classification, feature extraction, and the effect of using automatic speech recognition (ASR) output and automatic sentence boundary detection. Our experiments on a Mandarin broadcast news speech corpus show that the three-way classification framework outperforms the binary classification. The entropy-based feature weighting method generally performs better than others. Using ASR output degrades system performance, with more degradation observed from using automatic sentence segmentation than speech recognition errors for this task, especially on the recall rate.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

广播新闻中的片段识别对于定位有用的问答信息、挖掘特定人物的观点以及丰富带引号的语音识别输出具有重要意义。本文在分类框架下对该问题进行了系统的研究,包括分类问题的提出、特征提取以及使用自动语音识别输出和自动句子边界检测的效果。我们在一个普通话广播新闻语音语料库上的实验表明,三向分类框架优于二元分类。基于熵的特征加权方法通常比其他方法性能更好。使用ASR输出会降低系统性能,在这个任务中,使用自动句子切分比语音识别错误导致的性能下降更大,尤其是在召回率上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soundbite identification using reference and automatic transcripts of broadcast news speech
Soundbite identification in broadcast news is important for locating information useful for question answering, mining opinions of a particular person, and enriching speech recognition output with quotation marks. This paper presents a systematic study of this problem under a classification framework, including problem formulation for classification, feature extraction, and the effect of using automatic speech recognition (ASR) output and automatic sentence boundary detection. Our experiments on a Mandarin broadcast news speech corpus show that the three-way classification framework outperforms the binary classification. The entropy-based feature weighting method generally performs better than others. Using ASR output degrades system performance, with more degradation observed from using automatic sentence segmentation than speech recognition errors for this task, especially on the recall rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信