{"title":"无桥SEPIC功率因数校正整流器的连续导通方式","authors":"S. Sindhuja, S. Sripriya","doi":"10.1109/ICCPEIC.2013.6778516","DOIUrl":null,"url":null,"abstract":"This paper deals with modelling and simulation of Single phase AC-DC Bridgeless Continuous Conduction Mode (CCM) with Single Ended Primary Inductance Converter (SEPIC) for Power Factor Correction (PFC) rectifier. The topology is improved by the absence of an input diode bridge and the presence of only two semiconductor switches in the current flowing path during each switching cycle which results in lesser conduction losses and improved thermal management compared to the conventional SEPIC converters. By implementing the improved topology in CCM it ensures almost unity power factor in a simple and effective manner. The CCM operation reduces the complexity of the control circuitry. An operating principle and a detailed analysis of the proposed converter are presented. It is shown that the efficiency of the SEPIC Converter can be significantly improved. Performance Comparisons between the improved and conventional SEPIC PFC rectifier are carried out using MATLAB software and result is presented.","PeriodicalId":411175,"journal":{"name":"2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Continuous Conduction Mode of Bridgeless SEPIC Power Factor Correction rectifier\",\"authors\":\"S. Sindhuja, S. Sripriya\",\"doi\":\"10.1109/ICCPEIC.2013.6778516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with modelling and simulation of Single phase AC-DC Bridgeless Continuous Conduction Mode (CCM) with Single Ended Primary Inductance Converter (SEPIC) for Power Factor Correction (PFC) rectifier. The topology is improved by the absence of an input diode bridge and the presence of only two semiconductor switches in the current flowing path during each switching cycle which results in lesser conduction losses and improved thermal management compared to the conventional SEPIC converters. By implementing the improved topology in CCM it ensures almost unity power factor in a simple and effective manner. The CCM operation reduces the complexity of the control circuitry. An operating principle and a detailed analysis of the proposed converter are presented. It is shown that the efficiency of the SEPIC Converter can be significantly improved. Performance Comparisons between the improved and conventional SEPIC PFC rectifier are carried out using MATLAB software and result is presented.\",\"PeriodicalId\":411175,\"journal\":{\"name\":\"2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPEIC.2013.6778516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPEIC.2013.6778516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous Conduction Mode of Bridgeless SEPIC Power Factor Correction rectifier
This paper deals with modelling and simulation of Single phase AC-DC Bridgeless Continuous Conduction Mode (CCM) with Single Ended Primary Inductance Converter (SEPIC) for Power Factor Correction (PFC) rectifier. The topology is improved by the absence of an input diode bridge and the presence of only two semiconductor switches in the current flowing path during each switching cycle which results in lesser conduction losses and improved thermal management compared to the conventional SEPIC converters. By implementing the improved topology in CCM it ensures almost unity power factor in a simple and effective manner. The CCM operation reduces the complexity of the control circuitry. An operating principle and a detailed analysis of the proposed converter are presented. It is shown that the efficiency of the SEPIC Converter can be significantly improved. Performance Comparisons between the improved and conventional SEPIC PFC rectifier are carried out using MATLAB software and result is presented.