基于单镜头检测器和扩展多列卷积神经网络的嵌入式树莓派车辆检测与分类

Wissam Bouzi, Samia Bentaieb, A. Ouamri
{"title":"基于单镜头检测器和扩展多列卷积神经网络的嵌入式树莓派车辆检测与分类","authors":"Wissam Bouzi, Samia Bentaieb, A. Ouamri","doi":"10.1109/EDiS57230.2022.9996516","DOIUrl":null,"url":null,"abstract":"Detection and classification of vehicle types is one of the most important applications in field of road safety. In this paper, we propose a deep learning process to detect and classify vehicles by using Single shot Detector (SSD) for detection and Di-lated Multi-Column Convolutional Neural Network (DMCCNN) for classification. Rather than using a fixed-scale convolutional layer, the second model we use is capable to extract features from various scales of an image employing different dilated filters to improve the performance classification, especially for similar-looking vehicles like Suv and Sedan. An embedded Raspberry Pi vehicle detection and classification system is developed using a built-in Pi camera. The results are comparable with desktop-based results in the literature yielding an accuracy of 95.93 % on BIT dataset.","PeriodicalId":288133,"journal":{"name":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded Raspberry Pi Vehicle Detection and Classification using Single Shot Detector and Dilated Multi-Column Convolutional Neural Network\",\"authors\":\"Wissam Bouzi, Samia Bentaieb, A. Ouamri\",\"doi\":\"10.1109/EDiS57230.2022.9996516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection and classification of vehicle types is one of the most important applications in field of road safety. In this paper, we propose a deep learning process to detect and classify vehicles by using Single shot Detector (SSD) for detection and Di-lated Multi-Column Convolutional Neural Network (DMCCNN) for classification. Rather than using a fixed-scale convolutional layer, the second model we use is capable to extract features from various scales of an image employing different dilated filters to improve the performance classification, especially for similar-looking vehicles like Suv and Sedan. An embedded Raspberry Pi vehicle detection and classification system is developed using a built-in Pi camera. The results are comparable with desktop-based results in the literature yielding an accuracy of 95.93 % on BIT dataset.\",\"PeriodicalId\":288133,\"journal\":{\"name\":\"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDiS57230.2022.9996516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS57230.2022.9996516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆类型检测与分类是道路安全领域的重要应用之一。在本文中,我们提出了一种深度学习过程来检测和分类车辆,使用单镜头检测器(SSD)进行检测,并使用双列多列卷积神经网络(DMCCNN)进行分类。我们使用的第二个模型不是使用固定尺度的卷积层,而是能够从图像的不同尺度中提取特征,使用不同的扩展滤波器来改进性能分类,特别是对于外观相似的车辆,如Suv和轿车。利用树莓派内置摄像头,开发了一种嵌入式树莓派车辆检测与分类系统。结果与文献中基于桌面的结果相当,在BIT数据集上产生95.93%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Raspberry Pi Vehicle Detection and Classification using Single Shot Detector and Dilated Multi-Column Convolutional Neural Network
Detection and classification of vehicle types is one of the most important applications in field of road safety. In this paper, we propose a deep learning process to detect and classify vehicles by using Single shot Detector (SSD) for detection and Di-lated Multi-Column Convolutional Neural Network (DMCCNN) for classification. Rather than using a fixed-scale convolutional layer, the second model we use is capable to extract features from various scales of an image employing different dilated filters to improve the performance classification, especially for similar-looking vehicles like Suv and Sedan. An embedded Raspberry Pi vehicle detection and classification system is developed using a built-in Pi camera. The results are comparable with desktop-based results in the literature yielding an accuracy of 95.93 % on BIT dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信