基于卷积神经网络和双向长短期记忆的面向情感分析

Alson Cahyadi, M. L. Khodra
{"title":"基于卷积神经网络和双向长短期记忆的面向情感分析","authors":"Alson Cahyadi, M. L. Khodra","doi":"10.1109/ICAICTA.2018.8541300","DOIUrl":null,"url":null,"abstract":"In order to improve performance of previous aspect-based sentiment analysis (ABSA) on restaurant reviews in Indonesian language, this paper adapts the research achieving the highest F1 at SemEval 2016. We use feedforward neural network with one-vs-all strategy for aspect category classification (Slot 1), Conditional Random Field (CRF) for opinion target expression extraction (Slot 2), and Convolutional Neural Network (CNN) for sentiment polarity classification (Slot 3). Aside from lexical features we also use additional features learned from neural networks. We train our model on 992 sentences and evaluate them on 382 sentences. Higher performances are achieved for Slot 1 (F1 0.870) and Slot 3 (F1 0.764) but lower on Slot 2 (F1 0.787).","PeriodicalId":184882,"journal":{"name":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Aspect-Based Sentiment Analysis Using Convolutional Neural Network and Bidirectional Long Short-Term Memory\",\"authors\":\"Alson Cahyadi, M. L. Khodra\",\"doi\":\"10.1109/ICAICTA.2018.8541300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve performance of previous aspect-based sentiment analysis (ABSA) on restaurant reviews in Indonesian language, this paper adapts the research achieving the highest F1 at SemEval 2016. We use feedforward neural network with one-vs-all strategy for aspect category classification (Slot 1), Conditional Random Field (CRF) for opinion target expression extraction (Slot 2), and Convolutional Neural Network (CNN) for sentiment polarity classification (Slot 3). Aside from lexical features we also use additional features learned from neural networks. We train our model on 992 sentences and evaluate them on 382 sentences. Higher performances are achieved for Slot 1 (F1 0.870) and Slot 3 (F1 0.764) but lower on Slot 2 (F1 0.787).\",\"PeriodicalId\":184882,\"journal\":{\"name\":\"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2018.8541300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2018.8541300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

为了提高先前基于方面的情感分析(ABSA)在印度尼西亚语餐厅评论中的表现,本文采用了在SemEval 2016中获得最高F1的研究。我们使用具有一对一策略的前馈神经网络进行方面类别分类(Slot 1),条件随机场(CRF)用于意见目标表达提取(Slot 2),卷积神经网络(CNN)用于情感极性分类(Slot 3)。除了词汇特征外,我们还使用从神经网络学习的其他特征。我们在992个句子上训练了我们的模型,并在382个句子上对它们进行了评估。槽位1 (F1 0.870)和槽位3 (F1 0.764)的性能更高,但槽位2 (F1 0.787)的性能较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aspect-Based Sentiment Analysis Using Convolutional Neural Network and Bidirectional Long Short-Term Memory
In order to improve performance of previous aspect-based sentiment analysis (ABSA) on restaurant reviews in Indonesian language, this paper adapts the research achieving the highest F1 at SemEval 2016. We use feedforward neural network with one-vs-all strategy for aspect category classification (Slot 1), Conditional Random Field (CRF) for opinion target expression extraction (Slot 2), and Convolutional Neural Network (CNN) for sentiment polarity classification (Slot 3). Aside from lexical features we also use additional features learned from neural networks. We train our model on 992 sentences and evaluate them on 382 sentences. Higher performances are achieved for Slot 1 (F1 0.870) and Slot 3 (F1 0.764) but lower on Slot 2 (F1 0.787).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信