A. Kampker, H. Heimes, Christoph Lienemann, Daniel Grauel, Martyn Jones
{"title":"新型锂离子电池组再制造架构的开发","authors":"A. Kampker, H. Heimes, Christoph Lienemann, Daniel Grauel, Martyn Jones","doi":"10.1109/EV.2017.8242090","DOIUrl":null,"url":null,"abstract":"With a rapid growth in the lithium-ion battery technology, particularly in the automotive sector, remanufacturing concepts to ensure maximum efficiency levels may be seen as an attractive option. Such a process does not currently exist and the opportunity to undercut cost-intensive batteries and support green credentials is one which the market is now ready for, namely, an alternative to buying new. A feasible remanufacturing concept can further reduce the current total cost of ownership with an adequate solution under consideration of the current amount of battery pack returners. With this in mind, this research provides a transparent remanufacturing architecture, which can handle a capacity of 5,000 up to 20,000 battery packs per year, depending on the selected degree of automation, manual, hybrid or fully automated. Furthermore, different tools from a factory planning structures will be applied on purpose of an industrial feasible concept. In addition, the assessment considers diverse scenarios of the battery module reusability to ensure a realistic forecast. Consequently, the potential for this outlined concept will compete for an increasing sector of a global market, which is expected to rise to 1.3 billion cars by 2030 and there is a growing interest in electric vehicles. Therefore, any innovations in battery production (and which will include the concept of remanufacturing) have the opportunity to challenge existing business models of practice while further reducing costs for the future customer of tomorrow.","PeriodicalId":186248,"journal":{"name":"2017 Electric Vehicles International Conference (EV)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of a novel remanufacturing architecture for lithium-ion battery packs\",\"authors\":\"A. Kampker, H. Heimes, Christoph Lienemann, Daniel Grauel, Martyn Jones\",\"doi\":\"10.1109/EV.2017.8242090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a rapid growth in the lithium-ion battery technology, particularly in the automotive sector, remanufacturing concepts to ensure maximum efficiency levels may be seen as an attractive option. Such a process does not currently exist and the opportunity to undercut cost-intensive batteries and support green credentials is one which the market is now ready for, namely, an alternative to buying new. A feasible remanufacturing concept can further reduce the current total cost of ownership with an adequate solution under consideration of the current amount of battery pack returners. With this in mind, this research provides a transparent remanufacturing architecture, which can handle a capacity of 5,000 up to 20,000 battery packs per year, depending on the selected degree of automation, manual, hybrid or fully automated. Furthermore, different tools from a factory planning structures will be applied on purpose of an industrial feasible concept. In addition, the assessment considers diverse scenarios of the battery module reusability to ensure a realistic forecast. Consequently, the potential for this outlined concept will compete for an increasing sector of a global market, which is expected to rise to 1.3 billion cars by 2030 and there is a growing interest in electric vehicles. Therefore, any innovations in battery production (and which will include the concept of remanufacturing) have the opportunity to challenge existing business models of practice while further reducing costs for the future customer of tomorrow.\",\"PeriodicalId\":186248,\"journal\":{\"name\":\"2017 Electric Vehicles International Conference (EV)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Electric Vehicles International Conference (EV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EV.2017.8242090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Electric Vehicles International Conference (EV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EV.2017.8242090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a novel remanufacturing architecture for lithium-ion battery packs
With a rapid growth in the lithium-ion battery technology, particularly in the automotive sector, remanufacturing concepts to ensure maximum efficiency levels may be seen as an attractive option. Such a process does not currently exist and the opportunity to undercut cost-intensive batteries and support green credentials is one which the market is now ready for, namely, an alternative to buying new. A feasible remanufacturing concept can further reduce the current total cost of ownership with an adequate solution under consideration of the current amount of battery pack returners. With this in mind, this research provides a transparent remanufacturing architecture, which can handle a capacity of 5,000 up to 20,000 battery packs per year, depending on the selected degree of automation, manual, hybrid or fully automated. Furthermore, different tools from a factory planning structures will be applied on purpose of an industrial feasible concept. In addition, the assessment considers diverse scenarios of the battery module reusability to ensure a realistic forecast. Consequently, the potential for this outlined concept will compete for an increasing sector of a global market, which is expected to rise to 1.3 billion cars by 2030 and there is a growing interest in electric vehicles. Therefore, any innovations in battery production (and which will include the concept of remanufacturing) have the opportunity to challenge existing business models of practice while further reducing costs for the future customer of tomorrow.