基于决策树算法的学生学习成绩预测

R. Hasan, S. Palaniappan, Abdul Rafiez Abdul Raziff, Salman Mahmood, Kamal Uddin Sarker
{"title":"基于决策树算法的学生学习成绩预测","authors":"R. Hasan, S. Palaniappan, Abdul Rafiez Abdul Raziff, Salman Mahmood, Kamal Uddin Sarker","doi":"10.1109/ICCOINS.2018.8510600","DOIUrl":null,"url":null,"abstract":"This work explores student’s academic performance using decision tree algorithm having parameters like Student’s Academic Information and Students Activity. We collected records of 22 students from Spring 2017 semester, studying in undergraduate level from Oman’s private Higher Education Institution. Proposed work utilizes Electronic Commerce Technologies module since it is a core module offered in every computing specialization. Furthermore, WEKA data mining tool is used to evaluate the decision tree algorithm for discovery of student’s performance along with Moodle access time. Simulation results demonstrate that Random Forest Tree algorithm showed better accuracy than comparative decision tree algorithms. Hence, shows good agreement for the training set provided. Therefore, the proposed work aid in improving student’s grades in the module. Helping stakeholders to analyze and evaluate the module delivery and results. Early detection and solution can be made both at the institutional level and module level.","PeriodicalId":168165,"journal":{"name":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Student Academic Performance Prediction by using Decision Tree Algorithm\",\"authors\":\"R. Hasan, S. Palaniappan, Abdul Rafiez Abdul Raziff, Salman Mahmood, Kamal Uddin Sarker\",\"doi\":\"10.1109/ICCOINS.2018.8510600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores student’s academic performance using decision tree algorithm having parameters like Student’s Academic Information and Students Activity. We collected records of 22 students from Spring 2017 semester, studying in undergraduate level from Oman’s private Higher Education Institution. Proposed work utilizes Electronic Commerce Technologies module since it is a core module offered in every computing specialization. Furthermore, WEKA data mining tool is used to evaluate the decision tree algorithm for discovery of student’s performance along with Moodle access time. Simulation results demonstrate that Random Forest Tree algorithm showed better accuracy than comparative decision tree algorithms. Hence, shows good agreement for the training set provided. Therefore, the proposed work aid in improving student’s grades in the module. Helping stakeholders to analyze and evaluate the module delivery and results. Early detection and solution can be made both at the institutional level and module level.\",\"PeriodicalId\":168165,\"journal\":{\"name\":\"2018 4th International Conference on Computer and Information Sciences (ICCOINS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Computer and Information Sciences (ICCOINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCOINS.2018.8510600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2018.8510600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

这项工作使用决策树算法来探索学生的学习成绩,该算法具有诸如学生的学术信息和学生活动等参数。我们从2017年春季学期收集了22名学生的记录,他们在阿曼私立高等教育机构学习本科水平。建议的工作利用电子商务技术模块,因为它是每个计算专业提供的核心模块。此外,使用WEKA数据挖掘工具来评估决策树算法,以发现学生的表现以及Moodle访问时间。仿真结果表明,随机森林树算法比比较决策树算法具有更好的准确率。因此,与所提供的训练集具有很好的一致性。因此,所提出的工作有助于提高学生在模块中的成绩。帮助涉众分析和评估模块交付和结果。可以在机构级和模块级进行早期检测和解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Student Academic Performance Prediction by using Decision Tree Algorithm
This work explores student’s academic performance using decision tree algorithm having parameters like Student’s Academic Information and Students Activity. We collected records of 22 students from Spring 2017 semester, studying in undergraduate level from Oman’s private Higher Education Institution. Proposed work utilizes Electronic Commerce Technologies module since it is a core module offered in every computing specialization. Furthermore, WEKA data mining tool is used to evaluate the decision tree algorithm for discovery of student’s performance along with Moodle access time. Simulation results demonstrate that Random Forest Tree algorithm showed better accuracy than comparative decision tree algorithms. Hence, shows good agreement for the training set provided. Therefore, the proposed work aid in improving student’s grades in the module. Helping stakeholders to analyze and evaluate the module delivery and results. Early detection and solution can be made both at the institutional level and module level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信