Jihwan Jeong, Dongwon Seo, Chan-Haeng Lee, Jonghoon Kwon, Heejo Lee, J. Milburn
{"title":"MysteryChecker:不可预测的认证,以检测Android中重新打包的恶意应用程序","authors":"Jihwan Jeong, Dongwon Seo, Chan-Haeng Lee, Jonghoon Kwon, Heejo Lee, J. Milburn","doi":"10.1109/MALWARE.2014.6999415","DOIUrl":null,"url":null,"abstract":"The number of malicious applications, sometimes known as malapps, in Android smartphones has increased significantly in recent years. Malapp writers abuse repackaging techniques to rebuild applications with code changes. Existing anti-malware applications do not successfully defeat or defend against the repackaged malapps due to numerous variants. Software-based attestation approaches widely used in a resource-constrained environment have been developed to detect code changes of software with low resource consumption. In this paper, we propose a novel software-based attestation approach, called MysteryChecker, leveraging an unpredictable attestation algorithm. For its unpredictable attestation, MysteryChecker applies the concept of code obfuscation, which changes the syntax in order to avoid code analysis by adversaries. More precisely, unpredictable attestation is achieved by chaining randomly selected crypto functions. A verifier sends a randomly generated attestation module, and the target application must reply with a correct response using the attestation module. Also, the target application periodically receives a new module that contains a different attestation algorithm. Thus, even if the attacker analyzes the attestation module, the target application replaces the existing attestation module with a new one and the analysis done by the attacker becomes invalid. Experimental results show that MysteryChecker is completely able to detect known and unknown variants of repackaged malapps, while existing anti-malware applications only partially detect the variants.","PeriodicalId":151942,"journal":{"name":"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"MysteryChecker: Unpredictable attestation to detect repackaged malicious applications in Android\",\"authors\":\"Jihwan Jeong, Dongwon Seo, Chan-Haeng Lee, Jonghoon Kwon, Heejo Lee, J. Milburn\",\"doi\":\"10.1109/MALWARE.2014.6999415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of malicious applications, sometimes known as malapps, in Android smartphones has increased significantly in recent years. Malapp writers abuse repackaging techniques to rebuild applications with code changes. Existing anti-malware applications do not successfully defeat or defend against the repackaged malapps due to numerous variants. Software-based attestation approaches widely used in a resource-constrained environment have been developed to detect code changes of software with low resource consumption. In this paper, we propose a novel software-based attestation approach, called MysteryChecker, leveraging an unpredictable attestation algorithm. For its unpredictable attestation, MysteryChecker applies the concept of code obfuscation, which changes the syntax in order to avoid code analysis by adversaries. More precisely, unpredictable attestation is achieved by chaining randomly selected crypto functions. A verifier sends a randomly generated attestation module, and the target application must reply with a correct response using the attestation module. Also, the target application periodically receives a new module that contains a different attestation algorithm. Thus, even if the attacker analyzes the attestation module, the target application replaces the existing attestation module with a new one and the analysis done by the attacker becomes invalid. Experimental results show that MysteryChecker is completely able to detect known and unknown variants of repackaged malapps, while existing anti-malware applications only partially detect the variants.\",\"PeriodicalId\":151942,\"journal\":{\"name\":\"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MALWARE.2014.6999415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MALWARE.2014.6999415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MysteryChecker: Unpredictable attestation to detect repackaged malicious applications in Android
The number of malicious applications, sometimes known as malapps, in Android smartphones has increased significantly in recent years. Malapp writers abuse repackaging techniques to rebuild applications with code changes. Existing anti-malware applications do not successfully defeat or defend against the repackaged malapps due to numerous variants. Software-based attestation approaches widely used in a resource-constrained environment have been developed to detect code changes of software with low resource consumption. In this paper, we propose a novel software-based attestation approach, called MysteryChecker, leveraging an unpredictable attestation algorithm. For its unpredictable attestation, MysteryChecker applies the concept of code obfuscation, which changes the syntax in order to avoid code analysis by adversaries. More precisely, unpredictable attestation is achieved by chaining randomly selected crypto functions. A verifier sends a randomly generated attestation module, and the target application must reply with a correct response using the attestation module. Also, the target application periodically receives a new module that contains a different attestation algorithm. Thus, even if the attacker analyzes the attestation module, the target application replaces the existing attestation module with a new one and the analysis done by the attacker becomes invalid. Experimental results show that MysteryChecker is completely able to detect known and unknown variants of repackaged malapps, while existing anti-malware applications only partially detect the variants.