{"title":"设计基于生物阻抗的细胞培养测试传感器","authors":"P. Pérez, A. Yúfera, J. A. Serrano, G. Huertas","doi":"10.1109/DCIS51330.2020.9268672","DOIUrl":null,"url":null,"abstract":"This work presents a procedure to improve biomedical sensor design flow by including information taken from sensor technical specifications and data from its biomedical dynamics, in our case, the system described is sensing cell culture assays. The main structural components of a biosensor for cell culture with real-time monitoring are analyzed, modelled and incorporated into the system design flow in such a way that the resulting sensor designed by the procedure will engender analysis of the circuits’ constraints and cell sensitivity, together with the dynamics imposed by the living cells. The time evolution for general cell cultures is reproduced, and an image processing approach is applied to transduce the cell increments to the cell-electrode parameters as previously defined. The proposed tool is applied to the Electrical Cell-Substrate Sensing (ECIS) technique for cell culture test using herein the Oscillation Based Test (OBT) as a bioimpedance testing method. Other bioimpedance test techniques could be directly implemented into the proposed tool to profit similar results. The aforementioned tool, that fully models a cell-culture assay, was experimentally tested using the AA8 cell line, and the results presented in this paper validating the tool predictions.","PeriodicalId":186963,"journal":{"name":"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing bioimpedance based sensors for cell cultures test\",\"authors\":\"P. Pérez, A. Yúfera, J. A. Serrano, G. Huertas\",\"doi\":\"10.1109/DCIS51330.2020.9268672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a procedure to improve biomedical sensor design flow by including information taken from sensor technical specifications and data from its biomedical dynamics, in our case, the system described is sensing cell culture assays. The main structural components of a biosensor for cell culture with real-time monitoring are analyzed, modelled and incorporated into the system design flow in such a way that the resulting sensor designed by the procedure will engender analysis of the circuits’ constraints and cell sensitivity, together with the dynamics imposed by the living cells. The time evolution for general cell cultures is reproduced, and an image processing approach is applied to transduce the cell increments to the cell-electrode parameters as previously defined. The proposed tool is applied to the Electrical Cell-Substrate Sensing (ECIS) technique for cell culture test using herein the Oscillation Based Test (OBT) as a bioimpedance testing method. Other bioimpedance test techniques could be directly implemented into the proposed tool to profit similar results. The aforementioned tool, that fully models a cell-culture assay, was experimentally tested using the AA8 cell line, and the results presented in this paper validating the tool predictions.\",\"PeriodicalId\":186963,\"journal\":{\"name\":\"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCIS51330.2020.9268672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCIS51330.2020.9268672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing bioimpedance based sensors for cell cultures test
This work presents a procedure to improve biomedical sensor design flow by including information taken from sensor technical specifications and data from its biomedical dynamics, in our case, the system described is sensing cell culture assays. The main structural components of a biosensor for cell culture with real-time monitoring are analyzed, modelled and incorporated into the system design flow in such a way that the resulting sensor designed by the procedure will engender analysis of the circuits’ constraints and cell sensitivity, together with the dynamics imposed by the living cells. The time evolution for general cell cultures is reproduced, and an image processing approach is applied to transduce the cell increments to the cell-electrode parameters as previously defined. The proposed tool is applied to the Electrical Cell-Substrate Sensing (ECIS) technique for cell culture test using herein the Oscillation Based Test (OBT) as a bioimpedance testing method. Other bioimpedance test techniques could be directly implemented into the proposed tool to profit similar results. The aforementioned tool, that fully models a cell-culture assay, was experimentally tested using the AA8 cell line, and the results presented in this paper validating the tool predictions.