相称时滞系统的强时滞无关稳定性条件

Pooja Sharma, N. Satyanarayana
{"title":"相称时滞系统的强时滞无关稳定性条件","authors":"Pooja Sharma, N. Satyanarayana","doi":"10.23919/ACC53348.2022.9867425","DOIUrl":null,"url":null,"abstract":"The strong delay independent stability (DIS) for commensurate multiple time delay systems (CMTDSs) is studied in this paper. The necessary and sufficient strong DIS condition is derived for an augmented time delay system (TDS) originated from the original multiple time delay system (MTDS). A linear matrix inequality (LMI) condition is used to deal with the strong DIS, whose solution is derived by means of Kalman-Yakubovich-Popov (KYP) lemma and Kronecker properties. Two numerical examples are given to demonstrate the advantages and applicability of the proposed approach.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"66 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong delay independent stability condition for commensurate time delay systems\",\"authors\":\"Pooja Sharma, N. Satyanarayana\",\"doi\":\"10.23919/ACC53348.2022.9867425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong delay independent stability (DIS) for commensurate multiple time delay systems (CMTDSs) is studied in this paper. The necessary and sufficient strong DIS condition is derived for an augmented time delay system (TDS) originated from the original multiple time delay system (MTDS). A linear matrix inequality (LMI) condition is used to deal with the strong DIS, whose solution is derived by means of Kalman-Yakubovich-Popov (KYP) lemma and Kronecker properties. Two numerical examples are given to demonstrate the advantages and applicability of the proposed approach.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"66 5-6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了相应多时滞系统的强时滞无关稳定性问题。推导了由原多时滞系统(MTDS)演变而来的增广时滞系统(TDS)的强DIS充要条件。利用Kalman-Yakubovich-Popov (KYP)引理和Kronecker性质,导出了强DIS的解。最后给出了两个数值算例,说明了该方法的优越性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong delay independent stability condition for commensurate time delay systems
The strong delay independent stability (DIS) for commensurate multiple time delay systems (CMTDSs) is studied in this paper. The necessary and sufficient strong DIS condition is derived for an augmented time delay system (TDS) originated from the original multiple time delay system (MTDS). A linear matrix inequality (LMI) condition is used to deal with the strong DIS, whose solution is derived by means of Kalman-Yakubovich-Popov (KYP) lemma and Kronecker properties. Two numerical examples are given to demonstrate the advantages and applicability of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信