{"title":"自动语音识别的跨语言声学模型开发","authors":"Frank Diehl, A. Moreno, E. Monte‐Moreno","doi":"10.1109/ASRU.2007.4430150","DOIUrl":null,"url":null,"abstract":"In this work we discuss the development of two cross-lingual acoustic model sets for automatic speech recognition (ASR). The starting point is a set of multilingual Spanish-English-German hidden Markov models (HMMs). The target languages are Slovenian and French. During the discussion the problem of defining a multilingual phoneme set and the associated dictionary mapping is considered. A method is described to circumvent related problems. The impact of the acoustic source models on the performance of the target systems is analyzed in detail. Several cross-lingual defined target systems are built and compared to their monolingual counterparts. It is shown that cross-lingual build acoustic models clearly outperform pure monolingual models if only a limited amount of target data is available.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crosslingual acoustic model development for automatics speech recognition\",\"authors\":\"Frank Diehl, A. Moreno, E. Monte‐Moreno\",\"doi\":\"10.1109/ASRU.2007.4430150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we discuss the development of two cross-lingual acoustic model sets for automatic speech recognition (ASR). The starting point is a set of multilingual Spanish-English-German hidden Markov models (HMMs). The target languages are Slovenian and French. During the discussion the problem of defining a multilingual phoneme set and the associated dictionary mapping is considered. A method is described to circumvent related problems. The impact of the acoustic source models on the performance of the target systems is analyzed in detail. Several cross-lingual defined target systems are built and compared to their monolingual counterparts. It is shown that cross-lingual build acoustic models clearly outperform pure monolingual models if only a limited amount of target data is available.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crosslingual acoustic model development for automatics speech recognition
In this work we discuss the development of two cross-lingual acoustic model sets for automatic speech recognition (ASR). The starting point is a set of multilingual Spanish-English-German hidden Markov models (HMMs). The target languages are Slovenian and French. During the discussion the problem of defining a multilingual phoneme set and the associated dictionary mapping is considered. A method is described to circumvent related problems. The impact of the acoustic source models on the performance of the target systems is analyzed in detail. Several cross-lingual defined target systems are built and compared to their monolingual counterparts. It is shown that cross-lingual build acoustic models clearly outperform pure monolingual models if only a limited amount of target data is available.