规范的转换

G. Kotkin, V. Serbo
{"title":"规范的转换","authors":"G. Kotkin, V. Serbo","doi":"10.1093/oso/9780198853787.003.0011","DOIUrl":null,"url":null,"abstract":"This chapter addresses the canonical transformation defined by the given generating function, the rotation in the phase space as a canonical transformation, and themovement of the system as a canonical transformation. The chapter also discusses using the canonical transformations for solving the problems of the anharmonic oscillations and using the canonical transformation to diagonalize the Hamiltonian function of an anisotropic charged harmonic oscillator in a magnetic field. Finally, the chapter addresses the canonical variables which reduce the Hamiltonian function of the harmonic oscillator to zero and using them for consideration of the system of the harmonic oscillators with the weak nonlinear coupling.","PeriodicalId":201389,"journal":{"name":"Exploring Classical Mechanics","volume":"559 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical transformations\",\"authors\":\"G. Kotkin, V. Serbo\",\"doi\":\"10.1093/oso/9780198853787.003.0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter addresses the canonical transformation defined by the given generating function, the rotation in the phase space as a canonical transformation, and themovement of the system as a canonical transformation. The chapter also discusses using the canonical transformations for solving the problems of the anharmonic oscillations and using the canonical transformation to diagonalize the Hamiltonian function of an anisotropic charged harmonic oscillator in a magnetic field. Finally, the chapter addresses the canonical variables which reduce the Hamiltonian function of the harmonic oscillator to zero and using them for consideration of the system of the harmonic oscillators with the weak nonlinear coupling.\",\"PeriodicalId\":201389,\"journal\":{\"name\":\"Exploring Classical Mechanics\",\"volume\":\"559 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploring Classical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198853787.003.0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploring Classical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198853787.003.0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章讨论由给定的生成函数定义的正则变换,作为正则变换的相空间中的旋转,以及作为正则变换的系统的运动。本章还讨论了用正则变换求解非调和振荡问题,以及用正则变换对角化磁场中各向异性带电谐振子的哈密顿函数。最后,讨论了使谐振子的哈密顿函数降为零的正则变量,并将它们用于考虑具有弱非线性耦合的谐振子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical transformations
This chapter addresses the canonical transformation defined by the given generating function, the rotation in the phase space as a canonical transformation, and themovement of the system as a canonical transformation. The chapter also discusses using the canonical transformations for solving the problems of the anharmonic oscillations and using the canonical transformation to diagonalize the Hamiltonian function of an anisotropic charged harmonic oscillator in a magnetic field. Finally, the chapter addresses the canonical variables which reduce the Hamiltonian function of the harmonic oscillator to zero and using them for consideration of the system of the harmonic oscillators with the weak nonlinear coupling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信