基于分割的目标标记算法的脑肿瘤检测

Amitava Halder, C. Giri, A. Halder
{"title":"基于分割的目标标记算法的脑肿瘤检测","authors":"Amitava Halder, C. Giri, A. Halder","doi":"10.1109/ICECI.2014.6767389","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient brain tumor detection method, which can detect tumor and locate it in the brain MRI images. This method extracts the tumor by using K-means algorithm followed by Object labeling algorithm. Also, some preprocessing steps (median filtering and morphological operation) are used for tumor detection purpose. It is observed that the experimental results of the proposed method gives better result in comparison to other techniques.","PeriodicalId":315219,"journal":{"name":"International Conference on Electronics, Communication and Instrumentation (ICECI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Brain tumor detection using segmentation based Object labeling algorithm\",\"authors\":\"Amitava Halder, C. Giri, A. Halder\",\"doi\":\"10.1109/ICECI.2014.6767389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient brain tumor detection method, which can detect tumor and locate it in the brain MRI images. This method extracts the tumor by using K-means algorithm followed by Object labeling algorithm. Also, some preprocessing steps (median filtering and morphological operation) are used for tumor detection purpose. It is observed that the experimental results of the proposed method gives better result in comparison to other techniques.\",\"PeriodicalId\":315219,\"journal\":{\"name\":\"International Conference on Electronics, Communication and Instrumentation (ICECI)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronics, Communication and Instrumentation (ICECI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECI.2014.6767389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronics, Communication and Instrumentation (ICECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECI.2014.6767389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文提出了一种高效的脑肿瘤检测方法,可以在脑MRI图像中检测到肿瘤并对其进行定位。该方法首先使用K-means算法,然后使用对象标记算法对肿瘤进行提取。此外,还采用了一些预处理步骤(中值滤波和形态学运算)来进行肿瘤检测。实验结果表明,与其他方法相比,该方法具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain tumor detection using segmentation based Object labeling algorithm
In this paper, we propose an efficient brain tumor detection method, which can detect tumor and locate it in the brain MRI images. This method extracts the tumor by using K-means algorithm followed by Object labeling algorithm. Also, some preprocessing steps (median filtering and morphological operation) are used for tumor detection purpose. It is observed that the experimental results of the proposed method gives better result in comparison to other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信