Владимир Хмелёв, Роман Голых, С. С. Цыганок, А. С. Барсуков
{"title":"解决碳足迹问题的超声波影响:科学基础和技术建议","authors":"Владимир Хмелёв, Роман Голых, С. С. Цыганок, А. С. Барсуков","doi":"10.37816/2713-0789-2021-1-2-6-22","DOIUrl":null,"url":null,"abstract":"На сегодняшний день актуальной задачей является стремление уменьшить совокупный «карбоновый след». Существует несколько типов устройств разделения газов: криогенные, мембранные и сорбционные, которые наиболее эффективны при их реализации. Из сорбционных способов наибольшее развитие получили те, которые основаны на абсорбции – поглощение газового компонента реализуется всем объёмом жидкости. Для повышения производительности применяют ультразвуковое воздействие на пленку жидкости, вдоль которой движется поток поглощаемого газа – углекислого газа. За прошедшие годы не было проведено глубоких исследований по формированию колебаний жидкости в различных режимах для эффективного взаимодействия с газовым потоком. Поэтому в статье рассмотрены возможности реализации процесса абсорбции углекислого газа при высокоинтенсивном ультразвуковом воздействии (в кавитационном режиме) на дисперсные среды с жидкой фазой. Предложенная и разработанная модель, основанная на анализе влияния возникающих за счет кавитации волнообразных капиллярных возмущений поверхности «жидкость-газ», позволила установить возможность существенного ускорения абсорбции газа в жидкость и выявить оптимальные режимы диффузии в объёме жидкости. Результаты исследований подтвердили возможность ускорения процесса поглощения углекислоты и других вредных и целевых газообразных примесей не менее чем в 3 раза.","PeriodicalId":357107,"journal":{"name":"Industrial processes and technologies","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ультразвуковое воздействие в решении проблемы уменьшения карбонового следа: научные основы и технические предложения\",\"authors\":\"Владимир Хмелёв, Роман Голых, С. С. Цыганок, А. С. Барсуков\",\"doi\":\"10.37816/2713-0789-2021-1-2-6-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"На сегодняшний день актуальной задачей является стремление уменьшить совокупный «карбоновый след». Существует несколько типов устройств разделения газов: криогенные, мембранные и сорбционные, которые наиболее эффективны при их реализации. Из сорбционных способов наибольшее развитие получили те, которые основаны на абсорбции – поглощение газового компонента реализуется всем объёмом жидкости. Для повышения производительности применяют ультразвуковое воздействие на пленку жидкости, вдоль которой движется поток поглощаемого газа – углекислого газа. За прошедшие годы не было проведено глубоких исследований по формированию колебаний жидкости в различных режимах для эффективного взаимодействия с газовым потоком. Поэтому в статье рассмотрены возможности реализации процесса абсорбции углекислого газа при высокоинтенсивном ультразвуковом воздействии (в кавитационном режиме) на дисперсные среды с жидкой фазой. Предложенная и разработанная модель, основанная на анализе влияния возникающих за счет кавитации волнообразных капиллярных возмущений поверхности «жидкость-газ», позволила установить возможность существенного ускорения абсорбции газа в жидкость и выявить оптимальные режимы диффузии в объёме жидкости. Результаты исследований подтвердили возможность ускорения процесса поглощения углекислоты и других вредных и целевых газообразных примесей не менее чем в 3 раза.\",\"PeriodicalId\":357107,\"journal\":{\"name\":\"Industrial processes and technologies\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial processes and technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37816/2713-0789-2021-1-2-6-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial processes and technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37816/2713-0789-2021-1-2-6-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ультразвуковое воздействие в решении проблемы уменьшения карбонового следа: научные основы и технические предложения
На сегодняшний день актуальной задачей является стремление уменьшить совокупный «карбоновый след». Существует несколько типов устройств разделения газов: криогенные, мембранные и сорбционные, которые наиболее эффективны при их реализации. Из сорбционных способов наибольшее развитие получили те, которые основаны на абсорбции – поглощение газового компонента реализуется всем объёмом жидкости. Для повышения производительности применяют ультразвуковое воздействие на пленку жидкости, вдоль которой движется поток поглощаемого газа – углекислого газа. За прошедшие годы не было проведено глубоких исследований по формированию колебаний жидкости в различных режимах для эффективного взаимодействия с газовым потоком. Поэтому в статье рассмотрены возможности реализации процесса абсорбции углекислого газа при высокоинтенсивном ультразвуковом воздействии (в кавитационном режиме) на дисперсные среды с жидкой фазой. Предложенная и разработанная модель, основанная на анализе влияния возникающих за счет кавитации волнообразных капиллярных возмущений поверхности «жидкость-газ», позволила установить возможность существенного ускорения абсорбции газа в жидкость и выявить оптимальные режимы диффузии в объёме жидкости. Результаты исследований подтвердили возможность ускорения процесса поглощения углекислоты и других вредных и целевых газообразных примесей не менее чем в 3 раза.