{"title":"四重奏树连接系统的组合学","authors":"Emili Moan, Joseph P. Rusinko","doi":"10.2140/INVOLVE.2016.9.171","DOIUrl":null,"url":null,"abstract":"We apply classical quartet techniques to the problem of phylogenetic decisiveness and find a value $k$ such that all collections of at least $k$ quartets are decisive. Moreover, we prove that this bound is optimal and give a lower-bound on the probability that a collection of quartets is decisive.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combinatorics of Linked Systems of Quartet Trees\",\"authors\":\"Emili Moan, Joseph P. Rusinko\",\"doi\":\"10.2140/INVOLVE.2016.9.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply classical quartet techniques to the problem of phylogenetic decisiveness and find a value $k$ such that all collections of at least $k$ quartets are decisive. Moreover, we prove that this bound is optimal and give a lower-bound on the probability that a collection of quartets is decisive.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/INVOLVE.2016.9.171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/INVOLVE.2016.9.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We apply classical quartet techniques to the problem of phylogenetic decisiveness and find a value $k$ such that all collections of at least $k$ quartets are decisive. Moreover, we prove that this bound is optimal and give a lower-bound on the probability that a collection of quartets is decisive.