从图像内容和用户标签推断地理位置

Andrew C. Gallagher, D. Joshi, Jie Yu, Jiebo Luo
{"title":"从图像内容和用户标签推断地理位置","authors":"Andrew C. Gallagher, D. Joshi, Jie Yu, Jiebo Luo","doi":"10.1109/CVPRW.2009.5204168","DOIUrl":null,"url":null,"abstract":"Associating image content with their geographic locations has been increasingly pursued in the computer vision community in recent years. In a recent work, large collections of geotagged images were found to be helpful in estimating geo-locations of query images by simple visual nearest-neighbors search. In this paper, we leverage user tags along with image content to infer the geo-location. Our model builds upon the fact that the visual content and user tags of pictures can provide significant hints about their geo-locations. Using a large collection of over a million geotagged photographs, we build location probability maps of user tags over the entire globe. These maps reflect the picture-taking and tagging behaviors of thousands of users from all over the world, and reveal interesting tag map patterns. Visual content matching is performed using multiple feature descriptors including tiny images, color histograms, GIST features, and bags of textons. The combination of visual content matching and local tag probability maps forms a strong geo-inference engine. Large-scale experiments have shown significant improvements over pure visual content-based geo-location inference.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Geo-location inference from image content and user tags\",\"authors\":\"Andrew C. Gallagher, D. Joshi, Jie Yu, Jiebo Luo\",\"doi\":\"10.1109/CVPRW.2009.5204168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Associating image content with their geographic locations has been increasingly pursued in the computer vision community in recent years. In a recent work, large collections of geotagged images were found to be helpful in estimating geo-locations of query images by simple visual nearest-neighbors search. In this paper, we leverage user tags along with image content to infer the geo-location. Our model builds upon the fact that the visual content and user tags of pictures can provide significant hints about their geo-locations. Using a large collection of over a million geotagged photographs, we build location probability maps of user tags over the entire globe. These maps reflect the picture-taking and tagging behaviors of thousands of users from all over the world, and reveal interesting tag map patterns. Visual content matching is performed using multiple feature descriptors including tiny images, color histograms, GIST features, and bags of textons. The combination of visual content matching and local tag probability maps forms a strong geo-inference engine. Large-scale experiments have shown significant improvements over pure visual content-based geo-location inference.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

将图像内容与其地理位置相关联是近年来计算机视觉界越来越关注的问题。在最近的一项工作中,通过简单的视觉近邻搜索,发现大量地理标记图像的集合有助于估计查询图像的地理位置。在本文中,我们利用用户标签和图像内容来推断地理位置。我们的模型建立在这样一个事实之上,即图片的视觉内容和用户标签可以提供有关其地理位置的重要提示。使用超过一百万张地理标记照片的大集合,我们构建了全球用户标签的位置概率图。这些地图反映了来自世界各地成千上万用户的拍照和标记行为,并揭示了有趣的标记地图模式。视觉内容匹配使用多个特征描述符执行,包括微小图像、颜色直方图、GIST特征和文本包。视觉内容匹配和局部标签概率图的结合形成了一个强大的地理推理引擎。大规模实验表明,与纯基于视觉内容的地理位置推断相比,有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geo-location inference from image content and user tags
Associating image content with their geographic locations has been increasingly pursued in the computer vision community in recent years. In a recent work, large collections of geotagged images were found to be helpful in estimating geo-locations of query images by simple visual nearest-neighbors search. In this paper, we leverage user tags along with image content to infer the geo-location. Our model builds upon the fact that the visual content and user tags of pictures can provide significant hints about their geo-locations. Using a large collection of over a million geotagged photographs, we build location probability maps of user tags over the entire globe. These maps reflect the picture-taking and tagging behaviors of thousands of users from all over the world, and reveal interesting tag map patterns. Visual content matching is performed using multiple feature descriptors including tiny images, color histograms, GIST features, and bags of textons. The combination of visual content matching and local tag probability maps forms a strong geo-inference engine. Large-scale experiments have shown significant improvements over pure visual content-based geo-location inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信