软件定义数据中心中基于ml的实时性能优化

Kokouvi Bénoît Nougnanke, Y. Labit, M. Bruyère
{"title":"软件定义数据中心中基于ml的实时性能优化","authors":"Kokouvi Bénoît Nougnanke, Y. Labit, M. Bruyère","doi":"10.1109/HPSR52026.2021.9481836","DOIUrl":null,"url":null,"abstract":"Traffic optimization is fundamental to achieve both great application performance and resource efficiency in data centers with heterogeneous workloads, including incast. However, general performance models, providing insights on how various factors affect a certain performance metric used in the network optimization process, are missing. For the special case of incast, the existing models are analytical models, either tightly coupled with a particular protocol version or specific to certain empirical data. This paper proposes an SDN-enabled machine-learning-based optimization framework for incast performance optimization in data center networks that leverages learning-based performance modeling. Evaluations based on intensive NS-3 simulations show that we can achieve accurate performance predictions that enable finding the efficient switch buffer space to achieve optimal incast completion time in different configurations. We expect this framework to be a building block for autonomous data center network management.","PeriodicalId":158580,"journal":{"name":"2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ML-based Incast Performance Optimization in Software-Defined Data Centers\",\"authors\":\"Kokouvi Bénoît Nougnanke, Y. Labit, M. Bruyère\",\"doi\":\"10.1109/HPSR52026.2021.9481836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic optimization is fundamental to achieve both great application performance and resource efficiency in data centers with heterogeneous workloads, including incast. However, general performance models, providing insights on how various factors affect a certain performance metric used in the network optimization process, are missing. For the special case of incast, the existing models are analytical models, either tightly coupled with a particular protocol version or specific to certain empirical data. This paper proposes an SDN-enabled machine-learning-based optimization framework for incast performance optimization in data center networks that leverages learning-based performance modeling. Evaluations based on intensive NS-3 simulations show that we can achieve accurate performance predictions that enable finding the efficient switch buffer space to achieve optimal incast completion time in different configurations. We expect this framework to be a building block for autonomous data center network management.\",\"PeriodicalId\":158580,\"journal\":{\"name\":\"2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPSR52026.2021.9481836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 22nd International Conference on High Performance Switching and Routing (HPSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPSR52026.2021.9481836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

流量优化是在具有异构工作负载(包括cast)的数据中心中实现出色应用程序性能和资源效率的基础。但是,缺少一般的性能模型,这些模型提供了关于各种因素如何影响网络优化过程中使用的特定性能度量的见解。对于incast的特殊情况,现有的模型是分析模型,要么与特定的协议版本紧密耦合,要么特定于某些经验数据。本文提出了一个支持sdn的基于机器学习的优化框架,用于数据中心网络中的实时性能优化,该框架利用基于学习的性能建模。基于密集NS-3模拟的评估表明,我们可以实现准确的性能预测,从而能够找到有效的开关缓冲空间,从而在不同配置下实现最佳的铸完井时间。我们希望这个框架能够成为自主数据中心网络管理的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-based Incast Performance Optimization in Software-Defined Data Centers
Traffic optimization is fundamental to achieve both great application performance and resource efficiency in data centers with heterogeneous workloads, including incast. However, general performance models, providing insights on how various factors affect a certain performance metric used in the network optimization process, are missing. For the special case of incast, the existing models are analytical models, either tightly coupled with a particular protocol version or specific to certain empirical data. This paper proposes an SDN-enabled machine-learning-based optimization framework for incast performance optimization in data center networks that leverages learning-based performance modeling. Evaluations based on intensive NS-3 simulations show that we can achieve accurate performance predictions that enable finding the efficient switch buffer space to achieve optimal incast completion time in different configurations. We expect this framework to be a building block for autonomous data center network management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信