重新进入生产线的动态调度——一种深度学习方法

Fang-Yi Zhou, Cheng-Hung Wu, Cheng-Juei Yu
{"title":"重新进入生产线的动态调度——一种深度学习方法","authors":"Fang-Yi Zhou, Cheng-Hung Wu, Cheng-Juei Yu","doi":"10.1109/COASE.2017.8256238","DOIUrl":null,"url":null,"abstract":"This study presents a dynamic dispatching method for re-entrant production systems by combing dynamic programming (DP) with deep learning. First, we use DP to derive optimal value functions and optimal dispatching policies in a small number of numerical cases. The optimal value functions are then applied to train a deep neural network (DNN). The DNN builds an efficient estimation engine for optimal value functions. Since optimal dispatching decisions can be considered a compressed feature of the optimal value function, the value function estimated by DNN can be quickly mapped to dynamic dispatching policies. The accuracy of DNN dispatching policies is validated by the k-fold cross-validation (k-cv) test in a wide variety of re-entrant systems. Our preliminary investigation shows the potential of DNN in instantaneously generating accurate dynamic dispatching policies.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic dispatching for re-entrant production lines — A deep learning approach\",\"authors\":\"Fang-Yi Zhou, Cheng-Hung Wu, Cheng-Juei Yu\",\"doi\":\"10.1109/COASE.2017.8256238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a dynamic dispatching method for re-entrant production systems by combing dynamic programming (DP) with deep learning. First, we use DP to derive optimal value functions and optimal dispatching policies in a small number of numerical cases. The optimal value functions are then applied to train a deep neural network (DNN). The DNN builds an efficient estimation engine for optimal value functions. Since optimal dispatching decisions can be considered a compressed feature of the optimal value function, the value function estimated by DNN can be quickly mapped to dynamic dispatching policies. The accuracy of DNN dispatching policies is validated by the k-fold cross-validation (k-cv) test in a wide variety of re-entrant systems. Our preliminary investigation shows the potential of DNN in instantaneously generating accurate dynamic dispatching policies.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将动态规划与深度学习相结合,提出了一种可再入生产系统的动态调度方法。首先,在少数数值情况下,我们使用DP推导出最优值函数和最优调度策略。然后应用最优值函数来训练深度神经网络(DNN)。深度神经网络为最优值函数构建了一个高效的估计引擎。由于最优调度决策可以看作是最优值函数的压缩特征,因此DNN估计的值函数可以快速映射到动态调度策略。DNN调度策略的准确性通过k-fold交叉验证(k-cv)测试在各种各样的重入系统中得到验证。我们的初步研究显示深度神经网络在即时生成准确的动态调度策略方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic dispatching for re-entrant production lines — A deep learning approach
This study presents a dynamic dispatching method for re-entrant production systems by combing dynamic programming (DP) with deep learning. First, we use DP to derive optimal value functions and optimal dispatching policies in a small number of numerical cases. The optimal value functions are then applied to train a deep neural network (DNN). The DNN builds an efficient estimation engine for optimal value functions. Since optimal dispatching decisions can be considered a compressed feature of the optimal value function, the value function estimated by DNN can be quickly mapped to dynamic dispatching policies. The accuracy of DNN dispatching policies is validated by the k-fold cross-validation (k-cv) test in a wide variety of re-entrant systems. Our preliminary investigation shows the potential of DNN in instantaneously generating accurate dynamic dispatching policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信