一点一点的强化学习

Xiuyuan Lu, Benjamin Van Roy, V. Dwaracherla, M. Ibrahimi, Ian Osband, Zheng Wen
{"title":"一点一点的强化学习","authors":"Xiuyuan Lu, Benjamin Van Roy, V. Dwaracherla, M. Ibrahimi, Ian Osband, Zheng Wen","doi":"10.1561/2200000097","DOIUrl":null,"url":null,"abstract":"Reinforcement learning agents have demonstrated remarkable achievements in simulated environments. Data efficiency poses an impediment to carrying this success over to real environments. The design of data-efficient agents calls for a deeper understanding of information acquisition and representation. We discuss concepts and regret analysis that together offer principled guidance. This line of thinking sheds light on questions of what information to seek, how to seek that information, and what information to retain. To illustrate concepts, we design simple agents that build on them and present computational results that highlight data efficiency.","PeriodicalId":431372,"journal":{"name":"Found. Trends Mach. Learn.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Reinforcement Learning, Bit by Bit\",\"authors\":\"Xiuyuan Lu, Benjamin Van Roy, V. Dwaracherla, M. Ibrahimi, Ian Osband, Zheng Wen\",\"doi\":\"10.1561/2200000097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning agents have demonstrated remarkable achievements in simulated environments. Data efficiency poses an impediment to carrying this success over to real environments. The design of data-efficient agents calls for a deeper understanding of information acquisition and representation. We discuss concepts and regret analysis that together offer principled guidance. This line of thinking sheds light on questions of what information to seek, how to seek that information, and what information to retain. To illustrate concepts, we design simple agents that build on them and present computational results that highlight data efficiency.\",\"PeriodicalId\":431372,\"journal\":{\"name\":\"Found. Trends Mach. Learn.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2200000097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2200000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

强化学习智能体在模拟环境中已经取得了显著的成就。数据效率阻碍了将这种成功应用到实际环境中。数据高效代理的设计要求对信息获取和表示有更深的理解。我们讨论概念和遗憾分析,共同提供原则性指导。这种思路揭示了要寻找什么信息、如何寻找信息以及要保留什么信息等问题。为了说明概念,我们设计了基于概念的简单代理,并展示了突出数据效率的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning, Bit by Bit
Reinforcement learning agents have demonstrated remarkable achievements in simulated environments. Data efficiency poses an impediment to carrying this success over to real environments. The design of data-efficient agents calls for a deeper understanding of information acquisition and representation. We discuss concepts and regret analysis that together offer principled guidance. This line of thinking sheds light on questions of what information to seek, how to seek that information, and what information to retain. To illustrate concepts, we design simple agents that build on them and present computational results that highlight data efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信